Skip to main content
Log in

Unusual features of the high light acclimation of Chromera velia

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

In the present study, the high light (HL) acclimation of Chromera velia (Chromerida) was studied. HL-grown cells exhibited an increased cell volume and dry weight compared to cells grown at medium light (ML). The chlorophyll (Chl) a-specific absorption spectra (\(a_{\text{phy}}^{*}\)) of the HL cells showed an increased absorption efficiency over a wavelength range from 400 to 750 nm, possibly due to differences in the packaging of Chl a molecules. In HL cells, the size of the violaxanthin (V) cycle pigment pool was strongly increased. Despite a higher concentration of de-epoxidized V cycle pigments, non-photochemical quenching (NPQ) of the HL cells was slightly reduced compared to ML cells. The analysis of NPQ recovery during low light (LL) after a short illumination with excess light showed a fast NPQ relaxation and zeaxanthin epoxidation. Purification of the pigment–protein complexes demonstrated that the HL-synthesized V was associated with the chromera light-harvesting complex (CLH). However, the difference absorption spectrum of HL minus ML CLH, together with the 77 K fluorescence excitation spectra, suggested that the additional V was not protein bound but localized in a lipid phase associated with the CLH. The polypeptide analysis of the pigment–protein complexes showed that one out of three known LHCr proteins was associated in higher concentration with photosystem I in the HL cells, whereas in ML cells, it was enriched in the CLH fraction. In conclusion, the acclimation of C. velia to HL illumination shows features that are comparable to those of diatoms, while other characteristics more closely resemble those of higher plants and green algae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andrizhiyevskaya EG, Chojnicka A, Bautista JA et al (2005) Origin of the F685 and F695 fluorescence in Photosystem II. Photosynth Res 84:173–180

    Article  PubMed  CAS  Google Scholar 

  • Bassi R, Rigoni F, Giacometti GM (1990) Chlorophyll binding proteins with antenna function in higher plants and green algae. Photochem Photobiol 52:1187–1206

    Article  CAS  Google Scholar 

  • Bilger W, Björkman O (1990) Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Photosynth Res 25:173–185

    Article  PubMed  CAS  Google Scholar 

  • Bína D, Gardian Z, Herbstová M et al (2014) Novel type of red-shifted chlorophyll a antenna complex from Chromera velia: II. Biochemistry and spectroscopy. Biochim Biophys Acta 1837:802–810

    Article  PubMed  Google Scholar 

  • Büchel C, Wilhelm C (1993) Isolation and characterization of a photosystem I-associated antenna (LHC I) and a photosystem I-core complex from the chlorophyll c-containing alga Pleurochloris meiringensis (Xanthophyceae). J Photochem Photobiol B 20:87–93

    Article  Google Scholar 

  • Croce R, Chojnicka A, Morosinotto T et al (2007) The low-energy forms of photosystem I light-harvesting complexes: spectroscopic properties and pigment–pigment interaction characteristics. Biophys J 93:2418–2428

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Dyballa N, Metzger S (2009) Fast and sensitive colloidal coomassie G-250 staining for proteins in polyacrylamide gels. J Vis Exp 30. doi:10.3791/1431

  • Frommolt R, Werner S, Paulsen H et al (2008) Ancient recruitment by chromists of green algal genes encoding enzymes for carotenoid biosynthesis. Mol Biol Evol 25:2653–2667

    Article  PubMed  CAS  Google Scholar 

  • Gilbert M, Domin A, Becker A et al (2000) Estimation of primary productivity by chlorophyll a in vivo fluorescence in freshwater phytoplankton. Photosynthetica 38:111–126

    Article  CAS  Google Scholar 

  • Goss R, Jakob T (2010) Regulation and function of xanthophyll cycle-dependent photoprotection in algae. Photosynth Res 106:103–122

    Article  PubMed  CAS  Google Scholar 

  • Goss R, Lepetit B (2014) Biodiversity of NPQ. J Plant Physiol. doi:10.1016/j.jplph.2014.03.004

  • Goss R, Lohr M, Latowski D et al (2005) Role of hexagonal structure-forming lipids in diadinoxanthin and violaxanthin solubilization and de-epoxidation. Biochemistry 44:4028–4036

    Article  PubMed  CAS  Google Scholar 

  • Goss R, Pinto EA, Wilhelm C et al (2006) The importance of a highly active and ΔpH-regulated diatoxanthin epoxidase for the regulation of the PSII antenna function in diadinoxanthin cycle containing algae. J Plant Physiol 163:1008–1021

    Article  PubMed  CAS  Google Scholar 

  • Grouneva I, Jakob T, Wilhelm C et al (2009) The regulation of xanthophyll cycle activity and of non-photochemical fluorescence quenching by two alternative electron flows in the diatoms Phaeodactylum tricornutum and Cyclotella meneghiniana. Biochim Biophys Acta 1787:929–938

    Article  PubMed  CAS  Google Scholar 

  • Guillard RR, Lorenzen CJ (1972) Yellow–green algae with chlorophyllide C. J Phycol 8:10–14

    CAS  Google Scholar 

  • Guo JT, Weatherby K, Carter D et al (2010) Effect of nutrient concentration and salinity on immotile-motile kotransformation of Chromera velia. J Eukaryot Microbiol 57:444–446

    Article  PubMed  Google Scholar 

  • Havaux M, Kloppstech K (2001) The protective functions of carotenoid and flavonoid pigments against excess visible radiation at chilling temperature investigated in Arabidopsis npq and tt mutants. Planta 213:953–966

    Article  CAS  Google Scholar 

  • Jakob T, Wagner H, Stehfest K et al (2007) A complete energy balance from photons to new biomass reveals a light- and nutrient-dependent variability in the metabolic costs of carbon assimilation. J Exp Bot 58:2101–2112

    Article  PubMed  CAS  Google Scholar 

  • Janouškovec J, Horrák A, Obornik M et al (2010) A common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids. Proc Natl Acad Sci USA 107:10949–10954

    Article  PubMed  PubMed Central  Google Scholar 

  • Janouškovec J, Sobotka R, Lai D et al (2013) Split photosystem protein, linear-mapping topology, and growth of structural complexity in the plastid genome of Chromera velia. Mol Biol Evol 30:2447–2462

    Article  PubMed  Google Scholar 

  • Kirk JTO (1994) Light and photosynthesis in aquatic ecosystems, 2nd edn. Cambridge University Press, New York

    Book  Google Scholar 

  • Kotabová E, Kana R, Jaresova J et al (2011) Non-photochemical fluorescence quenching in Chromera velia is enabled by fast violaxanthin de-epoxidation. FEBS Lett 585:1941–1945

    Article  PubMed  Google Scholar 

  • Kotabová E, Jarešová J, Kaňa R et al (2014) Novel type of red-shifted chlorophyll a antenna complex from Chromera velia. I. Physiological relevance and functional connection to photosystems. Biochim Biophys Acta 1837:734–743

    Article  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Lavaud J, Goss R (2014) The peculiar features of non-photochemical fluorescence quenching in diatoms and brown algae. In: Demmig-Adams B, Adams II WW, Garab G et al (eds) Non-photochemical quenching and thermal energy dissipation in plants, algae and cyanobacteria. Springer, Dordrecht (in press)

  • Lepetit B, Volke D, Szabó M et al (2008) The oligomeric antenna of the diatom P. tricornutum—localisation of diadinoxanthin cycle pigments. In: Allen JF, Gantt E, Golbeck JH et al (eds) Photosynthesis. Energy from the sun. 14th International congress on photosynthesis. Springer, Dordrecht, pp 277–280

  • Lepetit B, Volke D, Gilbert M et al (2010) Evidence for the existence of one antenna-associated, lipid-dissolved and two protein-bound pools of diadinoxanthin cycle pigments in diatoms. Plant Physiol 154:1905–1920

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lepetit B, Goss R, Jakob T et al (2012) Molecular dynamics of the diatom thylakoid membrane under different light conditions. Photosynth Res 111:245–257

    Article  PubMed  CAS  Google Scholar 

  • Link AJ, Eng J, Schieltz DM et al (1999) Direct analysis of protein complexes using mass spectrometry. Nat Biotechnol 17:676–682

    Article  PubMed  CAS  Google Scholar 

  • Lohr M, Wilhelm C (1999) Algae displaying the diadinoxanthin cycle also possess the violaxanthin cycle. Proc Natl Acad Sci USA 96:8784–8789

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Mewes H, Richter M (2002) Supplementary ultraviolet-b radiation induces a rapid reversal of the diadinoxanthin cycle in the strong light-exposed diatom Phaeodactylum tricornutum. Plant Physiol 130:1527–1535

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Moore RB, Obornik M, Janouškovec J et al (2008) A photosynthetic alveolate closely related to apicomplexan parasites. Nature 451:959–963

    Article  PubMed  CAS  Google Scholar 

  • Müller P, Li XP, Niyogi KK (2001) Non-photochemical quenching. A response to excess light energy. Plant Physiol 125:1558–1566

    Article  PubMed  PubMed Central  Google Scholar 

  • Obornik M, Janouškovec J, Chrudimsky T et al (2009) Evolution of the apicoplast and its hosts: from heterotrophy to autotrophy and back again. Int J Parasitol 39:1–12

    Article  PubMed  CAS  Google Scholar 

  • Obornik M, Vancova M, Lai D et al (2011) Morphology and ultrastructure of multiple life cycle stages of the photosynthetic relative of apicomplexa, Chromera velia. Protist 162:115–130

    Article  PubMed  Google Scholar 

  • Obornik M, Modry D, Lukes M et al (2012) Morphology, ultrastructure and life cycle of Vitrella brassicaformis, a novel chromerid from the Great Barrier Reef. Protist 163:306–323

  • Okamoto N, McFadden GI (2008) The mother of all parasites. Future Microbiol 3:391–395

    Article  CAS  Google Scholar 

  • Pan H, Šlapeta J, Carter D et al (2012) Phylogenetic analysis of the light-harvesting system in Chromera velia. Photosynth Res 111:19–28

    Article  PubMed  CAS  Google Scholar 

  • Quigg A, Kotabová E, Jaresova J et al (2012) Photosynthesis in Chromera velia represents a simple system with high efficiency. PLoS One 7:e47036. doi:10.1371/journal.pone.0047036

  • Schaller S, Latowski D, Jemioła-Rzemińska M et al (2010) The main thylakoid membrane lipid monogalactosyldiacylglycerol (MGDG) promotes the de-epoxidation of violaxanthin associated with the light-harvesting complex of photosystem II (LHCII). Biochim Biophys Acta 1797:414–424

    Article  PubMed  CAS  Google Scholar 

  • Schellenberger Costa B, Jungandreas A, Jakob T et al (2013) Blue light is essential for high light acclimation and photoprotection in the diatom Phaeodactylum tricornutum. J Exp Bot 64:483–493

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Schmidt M, Gessner G, Luff M et al (2006) Proteomic analysis of the eyespot of Chlamydomonas reinhardtii provides novel insights into its components and tactic movements. Plant cell 18:1908–1930

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Schumann A, Goss R, Jakob T et al (2007) Investigation of the quenching efficiency of diatoxanthin in cells of Phaeodactylum tricornutum (Bacillariophyceae) with different pool sizes of xanthophyll cycle pigments. Phycologia 46:113–117

    Article  Google Scholar 

  • Su W, Jakob T, Wilhelm C (2012) The impact of nonphotochemical quenching of fluorescence on the photon balance in diatoms under dynamic light conditions. J Phycol 48:336–346

    Article  CAS  Google Scholar 

  • Thompson PA, Harrison PJ, Parslow JS (1991) Influence of irradiance on cell volume and carbon quota for ten species of marine phytoplankton. J Phycol 27:351–360

    Article  Google Scholar 

  • Tichy J, Gardian Z, Bina D et al (2013) Light harvesting complexes of Chromera velia, photosynthetic relative of apicomplexan parasites. Biochim Biophys Acta 1827:723–729

    Article  PubMed  CAS  Google Scholar 

  • Tracewell CA, Vrettos JS, Bautista JA et al (2001) Carotenoid photooxidation in photosystem II. Arch Biochem Biophys 385:61–69

    Article  PubMed  CAS  Google Scholar 

  • Veith T, Brauns J, Weisheit W et al (2009) Identification of a specific fucoxanthin-chlorophyll protein in the light harvesting complex of photosystem I in the diatom Cyclotella meneghiniana. Biochim Biophys Acta 1787:905–912

    Article  PubMed  CAS  Google Scholar 

  • Vernon LP (1960) Spectrophotometric determination of chlorophylls and pheophytins in plant extracts. Anal Chem 32:1144–1150

    Article  CAS  Google Scholar 

  • Wagner V, Fiedler M, Markert C et al (2004) Functional proteomics of circadian expressed proteins from Chlamydomonas reinhardtii. FEBS Lett 559:129–135

    Article  PubMed  CAS  Google Scholar 

  • Wilhelm C, Volkmar P, Lohmann C et al (1995) The HPLC-aided pigment analysis of phytoplankton cells as a powerful tool in water quality control. J Water Supply Res Technol Aqua 44:132–141

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reimund Goss.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 56 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mann, M., Hoppenz, P., Jakob, T. et al. Unusual features of the high light acclimation of Chromera velia . Photosynth Res 122, 159–169 (2014). https://doi.org/10.1007/s11120-014-0019-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-014-0019-3

Keywords

Navigation