Skip to main content
Log in

Isolation and structural determination of C8-vinyl-bacteriochlorophyll d from the bciA and bchU double mutant of the green sulfur bacterium Chlorobaculum tepidum

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

The mutant lacking enzymes BciA and BchU, that catalyzed reduction of the C8-vinyl group and methylation at the C20 position of bacteriochlorophyll (BChl) c, respectively, in the green sulfur bacterium Chlorobaculum tepidum, were constructed. This mutant accumulated C8-vinyl-BChl d derivatives, and a molecular structure of the major pigment was fully characterized by its NMR, mass, and circular dichroism spectra, as well as by chemical modification: (31 R)-8-vinyl-12-ethyl-(R[V,E])BChl d was confirmed as a new BChl d species in the cells. In vitro chlorosome-like self-aggregates of this pigment were prepared in an aqueous micellar solution, and formed more rapidly than those of (31 R)-8,12-diethyl-(R[E,E])BChl d isolated from the green sulfur bacterium Chlorobaculum parvum NCIB8327d synthesizing BChl d homologs. Their red-shifted Q y absorption bands were almost the same at 761 nm, and the value was larger than those of in vitro self-aggregates of R[E,E]BChl c (737 nm) and R[V,E]BChl c (726 nm), while the monomeric states of the former gave Q y bands at shorter wavelengths than those of the latter. Red shifts by self-aggregation of the two BChl d species were estimated to be 110 nm and much larger than those by BChls c (75 nm for [E,E] and 64 nm for [V,E]).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

APCI:

Atmospheric pressure chemical ionization

BChl:

Bacteriochlorophyll

Cba. :

Chlorobaculum

CD:

Circular dichroism

Chl:

Chlorophyll

Chl a PD :

Δ2,6-Phytadienylated Chl a

COR:

Chlorophyllide a oxidoreductase

C8V:

C8-vinyl

C8V-Chlide a :

3,8-Divinyl-chlorophyllide a

GSBs:

Green sulfur bacteria

LCMS:

Liquid chromatography mass spectrometry

NOE:

Nuclear Overhauser effect

PDA:

Photodiode array

R[E,E]:

(31 R)-8,12-Diethyl-

R[E,M]:

(31 R)-8-Ethyl-12-methyl-

R[I,E]:

(31 R)-8-Isobutyl-12-ethyl-

ROESY:

Rotating frame Overhauser enhancement spectroscopy

R[P,E]:

(31 R)-8-Propyl-12-ethyl-

R[V,E]:

(31 R)-8-Vinyl-12-ethyl-

R[V,M]:

(31 R)-8-Vinyl-12-methyl-

S[I,E]:

(31 S)-8-Isobutyl-12-ethyl-

S[P,E]:

(31 S)-8-Propyl-12-ethyl-

S[V,E]:

(31 S)-8-Vinyl-12-ethyl-

THF:

Tetrahydrofuran

References

  • Balaban TS, Holzwarth AR, Schaffner K, Boender G-J, de Groot HJM (1995) CP-MAS 13C-NMR dipolar correlation spectroscopy of 13C-enriched chlorosomes and isolated bacteriochlorophyll c aggregates of Chlorobium tepidum: the self-organization of pigments is the main structural feature of chlorosomes. Biochemistry 34:15259–15266

    Article  CAS  PubMed  Google Scholar 

  • Blankenship RE, Matsuura K (2003) Antenna complexes from green photosynthetic bacteria. In: Green BR, Parson WW (eds) Light-harvesting antennas in photosynthesis. Kluwer Academic Publishers, Dordrecht, pp 195–217

    Chapter  Google Scholar 

  • Borrego CM, Gerola PD, Miller M, Cox RP (1999) Light intensity effects on pigment composition and organisation in the green sulfur bacterium Chlorobium tepidum. Photosynth Res 59:159–166

    Article  CAS  Google Scholar 

  • Causgrove TP, Brune DC, Blankenship RE (1992) Förster energy transfer in chlorosomes of green photosynthetic bacteria. J Photochem Photobiol B 15:171–179

    Article  CAS  PubMed  Google Scholar 

  • Chew AG, Bryant DA (2007a) Chlorophyll biosynthesis in bacteria: the origins of structural and functional diversity. Annu Rev Microbiol 61:113–129

    Article  CAS  PubMed  Google Scholar 

  • Chew AG, Bryant DA (2007b) Characterization of a plant-like protochlorophyllide a divinyl reductase in green sulfur bacteria. J Biol Chem 282:2967–2975

    Article  CAS  PubMed  Google Scholar 

  • Chew AG, Frigaard N-U, Bryant DA (2007) Bacteriochlorophyllide c C-82 and C-121 methyltransferases are essential for adaptation to low light in Chlorobaculum tepidum. J Bacteriol 189:6176–6184

    Article  CAS  PubMed Central  Google Scholar 

  • Frigaard N-U, Bryant DA (2001) Chromosomal gene inactivation in the green sulfur bacterium Chlorobium tepidum by natural transformation. Appl Environ Microbiol 67:2538–2544

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fujii R, Kita M, Doe M, Iinuma Y, Oka N, Takaesu Y, Taira T, Iha M, Mizoguchi T, Cogdell RJ, Hashimoto H (2012) The pigment stoichiometry in a chlorophyll a/c type photosynthetic antenna. Photosynth Res 111:165–172

    Article  CAS  PubMed  Google Scholar 

  • Harada J, Saga Y, Oh-oka H, Tamiaki H (2005a) Different sensitivities to oxygen between two strains of the photosynthetic green sulfur bacterium Chlorobium vibrioforme NCIB 8327 with bacteriochlorophyll c and d. Photosynth Res 86:137–143

    Article  CAS  PubMed  Google Scholar 

  • Harada J, Saga Y, Yaeda Y, Oh-Oka H, Tamiaki H (2005b) In vitro activity of C-20 methyltransferase, BchU, involved in bacteriochlorophyll c biosynthetic pathway in green sulfur bacteria. FEBS Lett 579:1983–1987

    Article  CAS  PubMed  Google Scholar 

  • Harada J, Wada K, Yamaguchi H, Oh-oka H, Tamiaki H, Fukuyama K (2005c) Crystallization and preliminary X-ray diffraction study of BchU, a methyltransferase from Chlorobium tepidum involved in bacteriochlorophyll c biosynthesis. Acta Crystallogr Sect F 61:712–714

    Article  CAS  Google Scholar 

  • Harada J, Miyago S, Mizoguchi T, Azai C, Inoue K, Tamiaki H, Oh-oka H (2008) Accumulation of chlorophyllous pigments esterified with the geranylgeranyl group and photosynthetic competence in the CT2256-deleted mutant of the green sulfur bacterium Chlorobium tepidum. Photochem Photobiol Sci 7:1179–1187

    Article  CAS  PubMed  Google Scholar 

  • Harada J, Mizoguchi T, Tsukatani Y, Noguchi M, Tamiaki H (2012) A seventh bacterial chlorophyll driving a large light-harvesting antenna. Sci Rep 2:671. doi:10.1038/srep00671

    Article  PubMed Central  PubMed  Google Scholar 

  • Harada J, Mizoguchi T, Satoh S, Tsukatani Y, Yokono M, Noguchi M, Tanaka A, Tamiaki H (2013) Specific gene bciD for C7-methyl oxidation in bacteriochlorophyll e biosynthesis of brown-colored green sulfur bacteria. PLoS One 8:e60026. doi:10.61371/journal.pone.0060026

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Harada J, Mizoguchi T, Tsukatani Y, Yokono M, Tanaka A, Tamiaki H (2014) Chlorophyllide a oxidoreductase works as one of the divinyl reductases specifically involved in bacteriochlorophyll a biosynthesis. J Biol Chem 289. doi:10.1074/jbc.M113.546739

  • Helenius A, McCaslin DR, Fries E, Tanford C (1979) Properties of detergents. Methods Enzymol 56:734–749

    Article  CAS  PubMed  Google Scholar 

  • Ishii T, Kimura M, Yamamoto T, Kirihata M, Uehara K (2000) The effects of epimerization at the 31-position of bacteriochlorophylls c on their aggregation in chlorosomes of green sulfur bacteria. Control of the ratio of 31 epimers by light intensity. Photochem Photobiol 71:567–573

    Article  CAS  PubMed  Google Scholar 

  • Kureishi Y, Tamiaki H (1998) Synthesis and self-aggregation of zinc 20-halogenochlorins as a model for bacteriochlorophylls c/d. J Porphyr Phthalocyanines 2:159–169

    Article  CAS  Google Scholar 

  • Liu Z, Bryant DA (2011) Identification of a gene essential for the first committed step in the biosynthesis of bacteriochlorophyll c. J Biol Chem 286:22393–22402

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Manske AK, Glaeser J, Kuypers MM, Overmann J (2005) Physiology and phylogeny of green sulfur bacteria forming a monospecific phototrophic assemblage at a depth of 100 meters in the Black Sea. Appl Environ Microbiol 71:8049–8060

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maresca JA, Gomez Maqueo Chew A, Ponsati MR, Frigaard N-U, Ormerod JG, Bryant DA (2004) The bchU gene of Chlorobium tepidum encodes the C-20 methyltransferase in bacteriochlorophyll c biosynthesis. J Bacteriol 186:2558–2566

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Martinez-Planells A, Arellano JB, Borrego CM, Lopez-Iglesias C, Gich F, Garcia-Gil J (2002) Determination of the topography and biometry of chlorosomes by atomic force microscopy. Photosynth Res 71:83–90

    Article  CAS  PubMed  Google Scholar 

  • Mizoguchi T, Tamiaki H (2007) The effect of esterifying chains at the 17-propionate of bacteriochlorophylls-c on their self-assembly. Bull Chem Soc Jpn 80:2196–2202

    Article  CAS  Google Scholar 

  • Mizoguchi T, Hara K, Nagae H, Koyama Y (2000) Structural transformation among the aggregate forms of bacteriochlorophyll c as determined by electronic-absorption and NMR spectroscopies: dependence on the stereoisomeric configuration and on the bulkiness of the 8-C side chain. Photochem Photobiol 71:596–609

    CAS  PubMed  Google Scholar 

  • Mizoguchi T, Saga Y, Tamiaki H (2002) Isolation and structure determination of a complete set of bacteriochlorophyll-d homologs and epimers from a green sulfur bacterium Chlorobium vibrioforme and their aggregation properties in hydrophobic solvents. Photochem Photobiol Sci 1:780–787

    Article  CAS  PubMed  Google Scholar 

  • Mizoguchi T, Harada J, Tamiaki H (2006) Structural determination of dihydro- and tetrahydrogeranylgeranyl groups at the 17-propionate of bacteriochlorophylls-a. FEBS Lett 580:6644–6648

    Article  CAS  PubMed  Google Scholar 

  • Mizoguchi T, Harada J, Tamiaki H (2012) Characterization of chlorophyll pigments in the mutant lacking 8-vinyl reductase of green photosynthetic bacterium Chlorobaculum tepidum. Bioorg Med Chem 20:6803–6810

    Article  CAS  PubMed  Google Scholar 

  • Montano GA, Bowen BP, LaBelle JT, Woodbury NW, Pizziconi VB, Blankenship RE (2003) Characterization of Chlorobium tepidum chlorosomes: a calculation of bacteriochlorophyll c per chlorosome and oligomer modeling. Biophys J 85:2560–2565

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nagata N, Tanaka R, Satoh S, Tanaka A (2005) Identification of a vinyl reductase gene for chlorophyll synthesis in Arabidopsis thaliana and implications for the evolution of Prochlorococcus species. Plant Cell 17:233–240

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nakanishi H, Nozue H, Suzuki K, Kaneko Y, Taguchi G, Hayashida N (2005) Characterization of the Arabidopsis thaliana mutant pcb2 which accumulates divinyl chlorophylls. Plant Cell Physiol 46:467–473

    Article  CAS  PubMed  Google Scholar 

  • Nozawa T, Ohtomo K, Takeshita N, Morishita Y (1992) Substituent effects on the aggregation of bacteriochlorophyll d homologues purified from Chlorobium limicola. Bull Chem Soc Jpn 65:3493–3494

    Article  CAS  Google Scholar 

  • Orf GS, Blankenship RE (2013) Chlorosome antenna complexes from green photosynthetic bacteria. Photosynth Res 116:315–331

    Article  CAS  PubMed  Google Scholar 

  • Overmann J, Cypionka H, Pfennig N (1992) An extremely low-light-adapted phototrophic sulfur bacterium from the Black Sea. Limnol Oceanogr 37:150–155

    Article  CAS  Google Scholar 

  • Porra RJ (1991) Recent advances and re-assessments in chlorophyll extraction and assay procedures for terrestrial, aquatic, and marine organisms, including recalcitrant algae. In: Scheer H (ed) Chlorophylls. CRC Press, Boca Raton, pp 32–57

    Google Scholar 

  • Prentki P, Krisch HM (1984) In vitro insertional mutagenesis with a selectable DNA fragment. Gene 29:303–313

    Article  CAS  PubMed  Google Scholar 

  • Saga Y, Oh-oka H, Hayashi T, Tamiaki H (2003) Presence of exclusively bacteriochlorophyll-c containing substrain in the culture of green sulfur photosynthetic bacterium Chlorobium vibrioforme strain NCIB 8327 producing bacteriochlorophyll-d. Anal Sci 19:1575–1579

    Article  CAS  PubMed  Google Scholar 

  • Saga Y, Shibata Y, Itoh S, Tamiaki H (2007) Direct counting of submicrometer-sized photosynthetic apparatus dispersed in medium at cryogenic temperature by confocal laser fluorescence microscopy: estimation of the number of bacteriochlorophyll c in single light-harvesting antenna complexes chlorosomes of green photosynthetic bacteria. J Phys Chem B 111:12605–12609

    Article  CAS  PubMed  Google Scholar 

  • Senge MO, Smith NW, Smith KM (1993) Structure and conformation of photosynthetic pigments and related compounds. 5. Structural investigation of nickel(II) bacteriopetroporphyrins related to the bacteriochlorophylls c and d: evidence for localized conformational distortion in the c-series. Inorg Chem 32:1259–1265

    Article  CAS  Google Scholar 

  • Sridharan A, Muthuswamy J, Labelle JT, Pizziconi VB (2008) Immobilization of functional light antenna structures derived from the filamentous green bacterium Chloroflexus aurantiacus. Langmuir 24:8078–8089

    Article  CAS  PubMed  Google Scholar 

  • Tamiaki H (2005) Self-aggregates of natural and modified chlorophylls as photosynthetic light-harvesting antenna systems: substituent effect on the B-ring. Photochem Photobiol Sci 4:675–680

    Article  CAS  PubMed  Google Scholar 

  • Tamiaki H, Kunieda M (2011) Photochemistry of chlorophylls and their synthetic analogs. In: Kadish KM, Smith KM, Guilard R (eds) Handbook of porphyrin science, vol 11. World Scientific Publishing, Singapore, pp 223–290

    Google Scholar 

  • Tamiaki H, Takekoshi D, Mizoguchi T (2011) Reduction of vinyl groups in naturally occurring chlorophylls-a. Bioorg Med Chem 19:52–57

    Article  CAS  PubMed  Google Scholar 

  • Tsukatani Y, Harada J, Mizoguchi T, Tamiaki H (2013a) Bacteriochlorophyll homolog compositions in the bchU mutants of green sulfur bacteria. Photochem Photobiol Sci 12:2195–2201

    Article  CAS  PubMed  Google Scholar 

  • Tsukatani Y, Yamamoto H, Harada J, Yoshitomi T, Nomata J, Kasahara M, Mizoguchi T, Fujita Y, Tamiaki H (2013b) An unexpectedly branched biosynthetic pathway for bacteriochlorophyll b capable of absorbing near-infrared light. Sci Rep 3:1217. doi:10.1038/srep01217

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vogl K, Tank M, Orf GS, Blankenship RE, Bryant DA (2012) Bacteriochlorophyll f: properties of chlorosomes containing the “forbidden chlorophyll”. Front Microbiol 3:298. doi:10.3389/fmicb.2012.00298

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wada K, Yamaguchi H, Harada J, Niimi K, Osumi S, Saga Y, Oh-Oka H, Tamiaki H, Fukuyama K (2006) Crystal structures of BchU, a methyltransferase involved in bacteriochlorophyll c biosynthesis, and its complex with S-adenosylhomocysteine: implications for reaction mechanism. J Mol Biol 360:839–849

    Article  CAS  PubMed  Google Scholar 

  • Wahlund TM, Madigan MT (1995) Genetic transfer by conjugation in the thermophilic green sulfur bacterium Chlorobium tepidum. J Bacteriol 177:2583–2588

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Prof. Masato Noguchi of Kurume University School of Medicine, and Dr. Yusuke Tsukatani of Ritsumeikan University for their useful discussions. This work was partially supported by Grants-in-Aid for Scientific Research (A) (No. 22245030) (to H. T.) and (C) (No. 24590366) (to T. M.), for Young Scientists (B) (No. 24750169) (to J. H.), and on Innovative Areas “Artificial Photosynthesis (AnApple)” (No. 24107002) (to H. T.) from the Japan Society for the Promotion of Science (JSPS).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiro Harada or Hitoshi Tamiaki.

Additional information

Jiro Harada and Tadashi Mizoguchi have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 759 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harada, J., Mizoguchi, T., Nomura, K. et al. Isolation and structural determination of C8-vinyl-bacteriochlorophyll d from the bciA and bchU double mutant of the green sulfur bacterium Chlorobaculum tepidum . Photosynth Res 121, 13–23 (2014). https://doi.org/10.1007/s11120-014-0007-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-014-0007-7

Keywords

Navigation