Skip to main content

Advertisement

Log in

Response of chlorophyll d-containing cyanobacterium Acaryochloris marina to UV and visible irradiations

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

We have previously investigated the response mechanisms of photosystem II complexes from spinach to strong UV and visible irradiations (Wei et al J Photochem Photobiol B 104:118–125, 2011). In this work, we extend our study to the effects of strong light on the unusual cyanobacterium Acaryochloris marina, which is able to use chlorophyll d (Chl d) to harvest solar energy at a longer wavelength (740 nm). We found that ultraviolet (UV) or high level of visible and near-far red light is harmful to A. marina. Treatment with strong white light (1,200 μmol quanta m−2 s−1) caused a parallel decrease in PSII oxygen evolution of intact cells and in extracted pigments Chl d, zeaxanthin, and α-carotene analyzed by high-performance liquid chromatography, with severe loss after 6 h. When cells were irradiated with 700 nm of light (100 μmol quanta m−2 s−1) there was also bleaching of Chl d and loss of photosynthetic activity. Interestingly, UVB radiation (138 μmol quanta m−2 s−1) caused a loss of photosynthetic activity without reduction in Chl d. Excess absorption of light by Chl d (visible or 700 nm) causes a reduction in photosynthesis and loss of pigments in light harvesting and photoprotection, likely by photoinhibition and inactivation of photosystem II, while inhibition of photosynthesis by UVB radiation may occur by release of Mn ion(s) in Mn4CaO5 center in photosystem II.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

A. marina :

Acaryochloris marina

Chl:

Chlorophyll

HPLC:

High-performance liquid chromatography

NIR:

Near infrared

P680 :

Primary electron donor in chlorophyll a-containing photosystem II

P713 :

Primary electron donor in chlorophyll d-containing photosystem II

Pheo:

Pheophytin

PS I:

Photosystem I

PS II:

Photosystem II

Q A :

Primary quinone electron acceptor in PS II

Q B :

Secondary quinone electron acceptor in PS II

UV:

Ultraviolet light (100–400 nm)

UVA:

Ultraviolet A light (320–400 nm)

UVB:

Ultraviolet B light (280–320 nm)

UVC:

Ultraviolet C light (100–280 nm)

Vis:

Visible light

References

  • Adir N, Zer H, Shochat S, Ohad I (2003) Photoinhibition—a historical perspective. Photosynth Res 76:343–370

    Article  PubMed  CAS  Google Scholar 

  • Akiyama M, Miyashita H, Kise H, Watanabe T, Miyachi S, Kobayashi M (2001) Detection of chlorophyll d’ and pheophytin a in a chlorophyll d-dominating oxygenic photosynthetic prokaryote Acaryochloris marina. Anal Sci 17:205–208

    Article  PubMed  CAS  Google Scholar 

  • Allakhverdiev SI, Tomo T, Shimada Y, Kindo H, Nagao R, Klimov V, Mimuro M (2010) Redox potential of pheophytin a in photosystem II of two cyanobacteria having the different special pair chlorophylls. Proc Natl Acad Sci USA 107:3924–3929

    Article  PubMed  CAS  Google Scholar 

  • Andersson B, Aro E-M (2001) Photodamage and D1 protein turnover in photosystem II. Adv Photosynth Respir 11:377–393

    Article  CAS  Google Scholar 

  • Antal A, Lo W, Armstrong William H (2009) Illumination with ultraviolet or visible light induces chemical changes in the water soluble manganese complex, [Mn4O6(bpea)4]Br4. Photochem Photobiol 85:663–668

    Article  PubMed  CAS  Google Scholar 

  • Aro EM, Virgin I, Andersson B (1993) Photoinhibition of photosystem II. Inactivation, protein damage and turnover. Biochim Biophys Acta 1143:113–134

    Article  PubMed  CAS  Google Scholar 

  • Blankenship RE, Tiede DM, Barber J, Brudvig GW, Fleming G, Ghirardi M, Gunner MR, Junge W, Kramer DM, Melis A, Moore TA, Moser CC, Nocera DG, Nozik AJ, Ort DR, Parson WW, Prince RC, Sayre RT (2011) Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 332:805–809

    Article  PubMed  CAS  Google Scholar 

  • Boichenko VA, Klimov VV, Miyashita H, Miyachi S (2000) Functional characteristics of chlorophyll d-predominating photosynthetic apparatus in intact cells of Acaryochloris marina. Photosynth Res 65:269–277

    Article  PubMed  CAS  Google Scholar 

  • Carpentier R (2005) Influence of high light intensity on photosynthesis: photoinhibition and energy dissipation. In: Mohammad P (ed) Handbook of photosynthesis, 2nd edn. Taylor & Francis, Boca Raton, pp 327–342

    Google Scholar 

  • Chen M, Quinnell Rosanne G, Larkum Anthony WD (2002) The major light-harvesting pigment protein of Acaryochloris marina. FEBS Lett 514:149–152

    Article  PubMed  CAS  Google Scholar 

  • Chen M, Schliep M, Willows RD, Cai Z-L, Neilan BA, Scheer H (2010) A Red-Shifted Chlorophyll. Science 329:1318–1319

    CAS  Google Scholar 

  • Demmig-Adams B, Adams WW, Mattoo AK (2006) Photoprotection, photoinhibition, gene regulation, and environment. Springer, Dordrecht

    Book  Google Scholar 

  • Duxbury Z, Schliep M, Ritchie RJ, Larkum AWD, Chen M (2009) Chromatic photoacclimation extends utilisable photosynthetically active radiation in the chlorophyll d-containing cyanobacterium, Acaryochloris marina. Photosynth Res 101:69–75

    Article  PubMed  CAS  Google Scholar 

  • Finazzi G, Johnson GN, Dallosto L, Joliot P, Wollman F-A, Bassi R (2004) A zeaxanthin-independent nonphotochemical quenching mechanism localized in the photosystem II core complex. Proc Natl Acad Sci USA 101:12375–12380

    Article  PubMed  CAS  Google Scholar 

  • Franklin LA, Osmond CB, Larkum AWD (2003) Photoinhibition, UV-B and algal photosynthesis. Adv Photosynth Respir 14:351–384

    Article  CAS  Google Scholar 

  • Gloag RS, Ritchie RJ, Chen M, Larkum AWD, Quinnell RG (2007) Chromatic photoacclimation, photosynthetic electron transport and oxygen evolution in the chlorophyll d-containing oxyphotobacterium Acaryochloris marina. Biochim Biophys Acta 1767:127–135

    Article  PubMed  CAS  Google Scholar 

  • Hakala M, Tuominen I, Keranen M, Tyystjarvi T, Tyystjarvi E (2005) Evidence for the role of the oxygen-evolving manganese complex in photoinhibition of Photosystem II. Biochim Biophys Acta 1706:68–80

    Article  PubMed  CAS  Google Scholar 

  • Hou X, Hou HJM (2013) Roles of manganese in photosystem II dynamics to irradiations and temperatures. Frontiers Biol 8:312–322

    Article  CAS  Google Scholar 

  • Hou J, Kuang T, Peng D, Tang C, Tang P (1996) The photodamage and protective role of pheophytin a in the photosystem II reaction center against light-induced damage. Prog Nat Sci 6:489–493

    CAS  Google Scholar 

  • Hu Q, Miyashita H, Iwasaki II, Kurano N, Miyachi S, Iwaki M, Itoh S (1998) A photosystem I reaction center driven by chlorophyll d in oxygenic photosynthesis. Proc Natl Acad Sci USA 95:13319–13323

    Article  PubMed  CAS  Google Scholar 

  • Jones WL, Kok B (1966) Photoinhibition of chloroplast reactions. I. Kinetics and action spectra. Plant Physiol 41:1037–1043

    Article  PubMed  CAS  Google Scholar 

  • Kiss E, Kos PB, Chen M, Vass I (2012) A unique regulation of the expression of the psbA, psbD, and psbE genes, encoding the D1, D2 and cytochrome b559 subunits of the photosystem II complex in the chlorophyll d containing cyanobacterium Acaryochloris marina. Biochim Biophys Acta 1817:1083–1094

    Article  PubMed  CAS  Google Scholar 

  • Kramer DM (2010) The photonic smart grid of the chloroplast in action. Proc Natl Acad Sci USA 107:2729–2730

    Article  PubMed  CAS  Google Scholar 

  • Kuhl M, Chen M, Ralph Peter J, Schreiber U, Larkum Anthony WD (2005) Ecology: a niche for cyanobacteria containing chlorophyll d. Nature 433:820

    Article  PubMed  Google Scholar 

  • Melis A (1999) Photosystem-II damage and repair cycle in chloroplasts: what modulates the rate of photodamage in vivo? Trends Plant Sci 4:130–135

    Article  PubMed  Google Scholar 

  • Mielke S, Kiang N, Blankenship R, Gunner M, Mauzerall D (2011) Efficiency of photosynthesis in a Chl d-utilizing cyanobacterium is comparable to or higher than that in Chl a-utilizing oxygnetic species. Biochem Biophys Acta 1807:1231–1236

    Article  PubMed  CAS  Google Scholar 

  • Miyashita H, Ikemoto H, Kurano N, Adachi K, Chihara M, Miyachi S (1996) Chlorophyll d as a major pigment. Nature 383:402

    Article  CAS  Google Scholar 

  • Mullineaux CW, Emlyn-Jones D (2005) State transitions: an example of acclimation to low-light stress. J Exp Bot 56:389–393

    Article  PubMed  CAS  Google Scholar 

  • Niyogi KK (1999) Photoprotection revisited: genetic and molecular approaches. Annu Rev Plant Physiol Plant Mol Biol 50:333–359

    Article  PubMed  CAS  Google Scholar 

  • Ohnishi N, Allakhverdiev SI, Takahashi S, Higashi S, Watanabe M, Nishiyama Y, Murata N (2005) Two-step mechanism of photodamage to photosystem II: step 1 occurs at the oxygen-evolving complex and step 2 occurs at the photochemical reaction center. Biochemistry 44:8494–8499

    Article  PubMed  CAS  Google Scholar 

  • Powles SB, Cornic G, Louason G (1984) Photoinhibition of in vivo photosynthesis induced by strong light in the absence of carbon dioxide: an appraisal of the hypothesis that photorespiration protects against photoinhibition. Physiol Veget 22:437–446

    CAS  Google Scholar 

  • Razeghifard MR, Chen M, Hughes JL, Freeman J, Krausz E, Wydrzynski T (2005) Spectroscopic studies of photosystem II in chlorophyll d-containing Acaryochloris marina. Biochemistry 44:11178–11187

    Article  PubMed  CAS  Google Scholar 

  • Sarvikas P, Tyystjarvi T, Tyystjarvi E (2010) Kinetics of prolonged photoinhibition revisited: photoinhibited photosystem II centres do not protect the active ones against loss of oxygen evolution. Photosynth Res 103:7–17

    Article  PubMed  CAS  Google Scholar 

  • Shipton CA, Barber J (1991) Photoinduced degradation of the D1 polypeptide in isolated reaction centers of photosystem II: evidence for an autoproteolytic process triggered by the oxidizing side of the photosystem. Proc Natl Acad Sci USA 88:6691–6695

    Article  PubMed  CAS  Google Scholar 

  • Shipton CA, Barber J (1994) In vivo and in vitro photoinhibition reactions generate similar degradation fragments of D1 and D2 photosystem-II reaction-center proteins. Eur J Biochem 220:801–808

    Article  PubMed  CAS  Google Scholar 

  • Sun X, Peng L, Guo J, Chi W, Ma J, Lu C, Zhang L (2007) Formation of DEG5 and DEG8 complexes and their involvement in the degradation of photodamaged photosystem II reaction center D1 protein in Arabidopsis. Plant Cell 19:1347–1361

    Article  PubMed  CAS  Google Scholar 

  • Swingley WD, Chen M, Cheung PC, Conrad AL, Dejesa LC, Hao J, Honchak BM, Karbach LE, Kurdoglu A, Lahiri S, Mastrian SD, Miyashita H, Page L, Ramakrishna P, Satoh S, Sattley WM, Shimada Y, Taylor HL, Tomo T, Tsuchiya T, Wang ZT, Raymond J, Mimuro M, Blankenship RE, Touchman JW (2008) Niche adaptation and genome expansion in the chlorophyll d-producing cyanobacterium Acaryochloris marina. Proc Natl Acad Sci USA 105:2005–2010

    Article  PubMed  CAS  Google Scholar 

  • Takahashi S, Murata N (2008) How do environmental stresses accelerate photoinhibition? Trends Plant Sci 13:178–182

    Article  PubMed  CAS  Google Scholar 

  • Takahashi S, Whitney S, Itoh S, Maruyama T, Badger M (2008) Heat stress causes inhibition of the de novo synthesis of antenna proteins and photobleaching in cultured Symbiodinium. Proc Natl Acad Sci USA 105:4203–4208

    Article  PubMed  CAS  Google Scholar 

  • Telfer A, He WZ, Barber J (1990) Spectral resolution of more than one chlorophyll electron donor in the isolated photosystem II reaction center complex. Biochim Biophys Acta 1017:143–151

    Article  CAS  Google Scholar 

  • Tomo T, Okubo T, Akimoto S, Yokono M, Miyashita H, Tsuchiya T, Noguchi T, Mimuro M (2007) Identification of the special pair of photosystem II in a chlorophyll d-dominated cyanobacterium. Proc Natl Acad Sci USA 104:7283–7288

    Article  PubMed  CAS  Google Scholar 

  • Tomo T, Allakhverdiev SI, Mimuro M (2011) Constitution and energetics of photosystem I and photosystem II in the chlorophyll d-dominated cyanobacterium Acaryochloris marina. J Photochem Photobiol, B 104:333–340

    Article  CAS  Google Scholar 

  • Tyystjarvi E (2008) Photoinhibition of Photosystem II and photodamage of the oxygen evolving manganese cluster. Coord Chem Rev 252:361–376

    Article  CAS  Google Scholar 

  • Wei Z, Cady C, Brudvig GW, Hou HJM (2011) Photodamage of a Mn(III/IV)-oxo mix valence compound and photosystem II complexes: evidence that high-valent manganese species is responsible for UV-induced photodamage of oxygen evolving complex in photosystem II. J Photochem Photobiol, B 104:118–125

    Article  CAS  Google Scholar 

  • Yang Y, Sulpice R, Himmelbach A, Meinhard M, Christmann A, Grill E (2006) Fibrillin expression is regulated by abscisic acid response regulators and is involved in abscisic acid-mediated photoprotection. Proc Natl Acad Sci USA 103:6061–6066

    Article  PubMed  CAS  Google Scholar 

  • Yano J, Kern J, Irrgang KD, Latimer MJ, Bergmann U, Glatzel P, Pushkar Y, Biesiadka J, Loll B, Sauer K, Messinger J, Zouni A, Yachandra VK (2005) X-ray damage to the Mn4Ca complex in single crystals of photosystem II: a case study for metalloprotein crystallography. Proc Natl Acad Sci USA 102:12047–12052

    Article  PubMed  CAS  Google Scholar 

  • Yu Z, Kuang T, Tang C, Peng D, Zhao Q, Tang P, Li C (1992) Isolation and characterization of photosystem. II. Reaction center D1–D2-cytochrome b-559 complex from the chloroplasts of spinach. J Integ Plant Biol 34:588–595

    CAS  Google Scholar 

  • Zhang F, Wei Z, Jeranyama P, DeMoranville C, Hou HJM (2011) A significant loss in photosynthetic activity associated with the yellow vine syndrome of cranberry. HortScience 46:901–907

    Google Scholar 

Download references

Acknowledgments

The study was supported by Alabama State University, UMass Dartmouth, and in part the grant from the USDA CSREES. We are grateful to David Mauzerall and Irena Zielinski-Large for providing the Acaryochloris marina strain. We thank Lien-Yang Chou, Wanshu He, Ndi Geh, Joy Patel, and Robert Mulkein at UMass Dartmouth for insightful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harvey J. M. Hou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hou, X., Raposo, A. & Hou, H.J.M. Response of chlorophyll d-containing cyanobacterium Acaryochloris marina to UV and visible irradiations. Photosynth Res 117, 497–507 (2013). https://doi.org/10.1007/s11120-013-9946-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-013-9946-7

Keywords

Navigation