Skip to main content
Log in

On the polyphasic quenching kinetics of chlorophyll a fluorescence in algae after light pulses of variable length

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

This study reports on kinetics of the fluorescence decay in a suspension of the alga Scenedesmus quadricauda after actinic illumination. These are monitored as the variable fluorescence signal in the dark following light pulses of variable intensity and duration. The decay reflects the restoration of chlorophyll fluorescence quenching of the photosystem II (PSII) antennas and shows a polyphasic pattern which suggests the involvement of different processes. The overall quenching curve after a fluorescence-saturating pulse (SP) of 250-ms duration, commonly used in pulse amplitude modulation applications as the tool for estimating the maximal fluorescence (F m), has been termed P–O, in which P and O have the same meaning as used in the OJIP induction curve in the light. Deconvolution of this signal shows at least three distinguishable exponential phases with reciprocal rate constants of the order of 10, 102, and 103 ms. The size of the long (>103 ms) and moderate (~102 ms) lasting components relative to the complete quenching signal after an SP increases with the duration of the actinic pulse concomitantly with an increase in the reciprocal rate constants of the fast (~10 ms) and moderate quenching phases. Fluorescence responses upon single turnover flashes of 30-μs duration (STFs) given at discrete times during the P–O quenching were used as tools for identifying the quencher involved in the P–O quenching phase preceding the STF excitation. Results are difficult to interpret in terms of a single-hit two-state trapping mechanism with distinguishable quenching properties of open and closed reaction centers only. They give support for an earlier hypothesis on a double-hit three-state trapping mechanism in which the so-called semi-closed reaction centers of PSII are considered. In these trapping-competent centers the single reduced acceptor pair [PheQ A]1−, depending on the size of photoelectrochemically induced pH effects on the Q B-binding site, functions as an efficient fluorescence quencher.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Abbreviations

β :

Variable fraction of Q B-nonreducing RCs

DCMU:

3(3,4-Dichlorophenyl)-1,1-dimethylurea

F 0 :

Fluorescence level of dark-adapted system with 100 % open RCs

F m :

Fluorescence level of dark-adapted system with 100 % closed RCs after fluorescence-saturating pulse excitation

F PP(E)m :

Fluorescence level with 100 % semi-closed RCs after release of photo-(electro)chemical quenching (q PP(E) = 0, see for definition below)

FIA:

Fluorescence induction algorithm

k AB :

Rate constant of Q A oxidation

k β :

Rate constant of oxidation of [PheQ A]2− in reduced Q B-nonreducing RCs

k L :

Excitation rate of photosystem in light pulse

rF v :

Relative variable fluorescence (F − F 0)/(F m − F 0)

OEC:

Oxygen evolving complex

Ph(e):

Pheophytin, primary electron electron acceptor of PSII

PSII:

Photosystem II

Q A :

Primary quinone electron acceptor of PSII

Q B :

Secondary quinone electron acceptor of PSII

q PP :

Degree of photochemical quenching with 0 ≤ q PP ≤ 1

q PE :

Degree of photoelectrochemical quenching with 0 ≤ q PE ≤ 1

RC:

Reaction center of photosystem

SP:

Fluorescence-saturating pulse

STF:

Single turnover flash (excitation)

TSTM:

Three-state trapping model

YZ :

Secondary electron donor of PSII

References

  • Belyaeva NE, Bulychev AA, Riznichenko GY, Rubin AB (2011) A model of photosystem II for the analysis of fast fluorescence rise in plant leaves. Biophysics 56:464–477

    Article  Google Scholar 

  • Butler WL (1972) On the primary nature of fluorescence yield changes associated with photosynthesis. Proc Natl Acad Sci USA 69:3420–3422

    Article  PubMed  CAS  Google Scholar 

  • Chylla R, Whitmarsh J (1989) Inactive photosystem II complexes in leaves: turnover rate and quantitation. Plant Physiol 90:765–777

    Article  PubMed  CAS  Google Scholar 

  • Chylla R, Garab G, Whitmarsh J (1987) Evidence for slow turnover in a fraction of photosystem-II complexes in thylakoid membranes. Biochim Biophys Acta 894:562–72

    Google Scholar 

  • Duysens LNM, Sweers HE (1963) Mechanisms of the two photochemical reactions in algae as studied by means of fluorescence. In: Japanese Society of Plant Physiologists. Studies on microalgae and photosynthetic bacteria, University of Tokyo Press, Tokyo, pp 353–372

  • Goltsev V, Zaharieva I, Chernev P, Strasser RJ (2009) Delayed fluorescence in photosynthesis. Photosynth Res 101:217–232

    Article  PubMed  CAS  Google Scholar 

  • Jansen MAK, Pfister K (1990) Conserved kinetics at the reducing side of reaction center II in photosynthetic organisms; changed kinetics in triazine-resistant weeds. Z. Naturforschung 45c: 441–445

    Google Scholar 

  • Kalai HM, Goltsev V, Bosa K, Allakhverdiev SL, Strasser RT (2012) Experimental in vivo measurements of light emission in plants; a perspective dedicated to David Walker. Photosynth Res 114:69–96

    Article  Google Scholar 

  • Kautsky H, Hirsch A (1931) Neue Versuche zur Kohlensäureassimilation. Naturwiss 19:964–965

    Article  CAS  Google Scholar 

  • Kramer DM, Johnson G, Kiirats O, Edwards GE (2004) New fluorescence parameters for the determination of Q A redox state and excitation energy fluxes. Photosynth Res 79:209–218

    Article  PubMed  CAS  Google Scholar 

  • Lavergne J, Leci E (1993) Properties of of inactive photosystem II centers. Photosynth Res 35:323–343

    Article  CAS  Google Scholar 

  • Lazar D, Schansker G (2009) Modeling of chlorophyll a fluorescence transients. In: Laisk A, Nedbal L, Govindjee (eds) Photosynthesis in silico: understanding complexity from molecules to ecosystems. Springer, Dordrecht, pp 85–123

  • Mauzerall D (1972) Light induced fluorescence changes in chlorella, and the primary photoreactions for the production of oxygen. Proc Natl Acad Sci USA 69:1358–1362

    Article  PubMed  CAS  Google Scholar 

  • Nedbal L, Trtílek M, Kaftan D (1999) Flash fluorescence induction: a novel method to study regulation of photosystem II. J Photochem Photobiol B 48:154–157

    Article  CAS  Google Scholar 

  • Papageorgiou G, Govindjee (2004) Chlorophyll a fluorescence a signature of photosynthesis, advances in photosynthesis and respiration, volume 19 (ISBN 1-4020-3217-X), Springer, Dordrecht

  • Papageorgiou GC, Tsimilli-Michael M, Stamatakis K (2007) The fast and slow kinetics of chlorophyll a fluorescence induction in plants, algae and cyanobacteria: a viewpoint. Photosynth Res 94:275–290

    Article  PubMed  CAS  Google Scholar 

  • Robinson HH, Crofts AR (1983) Kinetics of the oxidation-reduction reactions of the photosystem II quinone acceptor complexand the pathway of de-excitation. FEBS Lett 153:221–226

    Article  CAS  Google Scholar 

  • Samson G, Prasil O, Yaakoubd B (1999) Photochemical and thermal phases of chlorophyll a fluorescence. Photosynthetica 37:163–182

    Article  CAS  Google Scholar 

  • Schansker G, Tóth SZ, Kovács L, Holzwarth AR, Garab G (2011) Evidence for a fluorescence yield change driven by a light-induced conformational change within photosystem II during the fast chlorophyll a fluorescence rise. Biochim Biophys Acta 1807:1032–1043

    Article  PubMed  CAS  Google Scholar 

  • Schansker G, Tóth SZ, Holzwarth AR, Garab G (2013) Chlorophyll a fluorescence: beyond the limits of the Q A-model. Photosynth Res. doi:10.1007/s11120-013-9806-5

    Google Scholar 

  • Schreiber U, Krieger A (1996) Hypothesis: two fundamentally different types of variable chlorophyll fluorescence in vivo. FEBS Lett 397:131–135

    Article  PubMed  CAS  Google Scholar 

  • Šetlík I, Šetlíková E, Masojídek J, Zachleder V, Kalina T, Mader P (1981) The effect of translation and transcription inhibitors on the development of the photosynthetic apparatus in cell cycles of Scenedesmus quadricauda. In: Akoyunoglou G (ed) Photosynthesis, Proceedings of the 5th international congress on photosynthesis, Halkidiki, 7–13 Sep, 1980, pp 481–490 Balaban International Sciences Services, Philadelphia).

  • Stirbet A (2013) Excitonic connectivity between photosystem II units: what is it, and how to measure it? Photosynth Res. doi:10.1007/s11120-013-9863-9

    PubMed  Google Scholar 

  • Stirbet A, Govindjee (2012) Chlorophyll a fluorescence induction: a personal perspective of the thermal phase, the J-I–P rise. Photosynth Res 113:15–61

    Article  PubMed  CAS  Google Scholar 

  • Stirbet A, Strasser BJ, Govindjee, Strasser RJ (1998) Chlorophyll a fluorescence induction in higher plants: modeling and numerical simulation. J Theor Biol 193:131–151

    Article  CAS  Google Scholar 

  • Strasser RJ, Srivastava A, Govindjee (1995) Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria. Photochem Photobiol 61:32–42

    Article  CAS  Google Scholar 

  • Suggett DJ, Prasil O, Borowitzka MA (2010) Chlorophyll a fluorescence in aquatic sciences methods and applications. Developments in applied phycology, Springer, p 334

    Book  Google Scholar 

  • van Kooten O, Snel JFH (1990) The use of fluorescence nomenclature in plant stress physiology. Photosynth Res 25(3):147–151

    Article  Google Scholar 

  • Velthuys BR, Amesz J (1974) Charge accumulation at the reducing site of system two of photosynthesis. Biochim Biophys Acta 325:138–148

    Google Scholar 

  • Vermaas WFJ, Arntzen CJ, Gu LQ, Yu CA (1983) Interactions of herbicides and azidoquinones at a photosystem II binding site in the thylakoid membrane. Biochim Biophys Acta 723:266–277

    Article  CAS  Google Scholar 

  • Vredenberg WJ (2000) A three-state model for energy trapping and chlorophyll fluorescence in photosystem II incorporating radical pair recombination. Biophys J 79:25–38

    Article  Google Scholar 

  • Vredenberg WJ (2004) System analysis of photoelectrochemical control of chlorophyll fluorescence in terms of trapping models of photosystem II: a challenging view. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a fluorescence: a signature of photosynthesis, Advances in photosynthesis and respiration, vol 19. Springer, Dordrecht, pp 133–172

    Chapter  Google Scholar 

  • Vredenberg WJ (2008) Analysis of initial chlorophyll fluorescence induction kinetics in chloroplasts in terms of rate constants of donor side quenching release and electron trapping in photosystem II. Photosynth Res 96:83–97

    Article  PubMed  CAS  Google Scholar 

  • Vredenberg WJ, Duysens LNM (1963) Transfer and trapping of excitation energy from bacteriochlorophyll to a reaction center during bacterial photosynthesis. Nature 197:355–357

    Article  PubMed  CAS  Google Scholar 

  • Vredenberg WJ, Pavlovič A (2013) Chlorophyll a fluorescence induction curve (Kautsky curve) in a Venus flytrap (Dionaea muscipula) leaf after mechanical trigger hair irritation. J Plant Physiol 170:242–250

    Article  CAS  Google Scholar 

  • Vredenberg WJ, Prasil O (2009) Modeling of chlorophyll a fluorescence kinetics in plant cells. Derivation of a descriptive algorithm. In: Laisk A, Nedbal L, Govindjee (eds) Photosynthesis in silico Understanding Complexity from Molecules to Ecosystems. Springer, Dordrecht, pp 125–149

  • Vredenberg WJ, Kasalicky V, Durchan M, Prasil O (2006) The chlorophyll a fluorescence induction pattern in chloroplasts upon repetitive single turnover excitations: accumulation and function of QB-nonreducing centers. Biochim Biophys Acta 1757:173–181

    Article  PubMed  CAS  Google Scholar 

  • Vredenberg WJ, Durchan M, Prasil O (2007) On the chlorophyll fluorescence yield in chloroplasts upon excitation with twin turnover flashes (TTF) and high frequency flash trains. Photosynth Res 93:183–192

    Article  PubMed  CAS  Google Scholar 

  • Vredenberg WJ, Durchan M, Prášil O (2012) The analysis of PS II photochemical activity using single and multi-turnover excitations. J Photochem Photobiol (B) 107:45–54

    Article  CAS  Google Scholar 

  • Zhu X-G, Baker NR, deSturler E, Ort DR, Long SP (2005) Chlorophyll a fluorescence induction kinetics in leaves predicted from a model describing each discrete step of excitation energy and electron transfer associated with photosystem II. Planta 23:114–133

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Ondrej Komarek for performing the variable fluorescence measurements and Mrs. Jana Hofhanzlova for growth of Scenedesmus cultures. The research of O.P. has been supported by the project Algatech (CZ.1.05/2.1.00/03.0110).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wim Vredenberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vredenberg, W., Prasil, O. On the polyphasic quenching kinetics of chlorophyll a fluorescence in algae after light pulses of variable length. Photosynth Res 117, 321–337 (2013). https://doi.org/10.1007/s11120-013-9917-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-013-9917-z

Keywords

Navigation