Skip to main content
Log in

Reconstitution, spectroscopy, and redox properties of the photosynthetic recombinant cytochrome b 559 from higher plants

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

A study of the in vitro reconstitution of sugar beet cytochrome b 559 of the photosystem II is described. Both α and β cytochrome subunits were first cloned and expressed in Escherichia coli. In vitro reconstitution of this cytochrome was carried out with partially purified recombinant subunits from inclusion bodies. Reconstitution with commercial heme of both (αα) and (ββ) homodimers and (αβ) heterodimer was possible, the latter being more efficient. The absorption spectra of these reconstituted samples were similar to that of the native heterodimer cytochrome b 559 form. As shown by electron paramagnetic resonance and potentiometry, most of the reconstituted cytochrome corresponded to a low spin form with a midpoint redox potential +36 mV, similar to that from the native purified cytochrome b 559. Furthermore, during the expression of sugar beet and Synechocystis sp. PCC 6803 cytochrome b 559 subunits, part of the protein subunits were incorporated into the host bacterial inner membrane, but only in the case of the β subunit from the cyanobacterium the formation of a cytochrome b 559-like structure with the bacterial endogenous heme was observed. The reason for that surprising result is unknown. This in vivo formed (ββ) homodimer cytochrome b 559-like structure showed similar absorption and electron paramagnetic resonance spectral properties as the native purified cytochrome b 559. A higher midpoint redox potential (+126 mV) was detected in the in vivo formed protein compared to the in vitro reconstituted form, most likely due to a more hydrophobic environment imposed by the lipid membrane surrounding the heme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

Abs:

Absorbance

BCA:

Bicinchroninic acid

Cyt:

Cytochrome

β-DM:

N-dodecyl-β-d-maltoside

DEAE:

Diethyl aminoethyl cellulose

E h :

Ambient redox potential

E m :

Midpoint redox potential

EPR:

Electron paramagnetic resonance

ε:

Extinction coefficient

HEPES:

4-(2-Hydroxyethyl)-1-piperazineethanesulfonic acid

HP:

High potential

HS:

High spin

IP:

Intermediate potential

IPTG:

Isopropyl β-d-1-thiogalactopyranoside

KDS:

Potassium dodecyl sulfate

LHCP:

Light-harvesting chlorophyll protein

LP:

Low potential

LS:

Low spin

MBP:

Maltose-binding protein

MES:

2-(N-Morpholino)ethanesulfonic acid

OD:

Optical density

PAGE:

Polyacrylamide gel electrophoresis

PMSF:

Phenylmethanesulfonylfluoride

PS:

Photosystem

SDS:

Sodium dodecyl sulfate

TRIS:

Tris(hydroxymethyl)aminomethane

References

  • Ahmad I, Giorgi LB, Barber J, Porter G, Klug DR (1993) Redox potentials of cytochrome b-559 in the D1/D2/cytochrome b-559 reaction centre of photosystem II. Biochim Biophys Acta 1143(2):239–242

    Article  CAS  Google Scholar 

  • Babcock GT, Widger WR, Cramer WA, Oertling WA, Metz JG (1985) Axial ligands of chloroplast cytochrome b-559: identification and requirement for a heme-cross-linked polypeptide structure. Biochemistry 24(14):3638–3645

    Article  PubMed  CAS  Google Scholar 

  • Betton JM, Hofnung M (1996) Folding of a mutant maltose-binding protein of Escherichia coli which forms inclusion bodies. J Biol Chem 271(14):8046–8052

    Article  PubMed  CAS  Google Scholar 

  • Bianchetti M, Zheleva D, Deak Z, Zharmuhamedov S, Klimov V, Nugent J, Vass I, Barber J (1998) Comparison of the functional properties of the monomeric and dimeric forms of the isolated CP47-reaction center complex. J Biol Chem 273(26):16128–16133

    Article  PubMed  CAS  Google Scholar 

  • Blumberg WE, Peisach J (1971) A unified theory for low-spin forms of all ferric heme proteins as studied by EPR. In: Chance B, Lee C-P, Blasie JK, Yonetani T, Mildvan AS (eds) Probes of structure and function of macromolecules and membranes, vol 2. Academic Press, New York, pp 215–229

    Google Scholar 

  • Bock R, Hagemann R, Kossel H, Kudla J (1993) Tissue- and stage-specific modulation of RNA editing of the psbF and psbL transcript from spinach plastids—a new regulatory mechanism? Mol Gen Genet 240(2):238–244

    Article  PubMed  CAS  Google Scholar 

  • Cramer WA, Whitmarsh J (1977) Photosynthetic cytochromes. Annu Rev Plant Biol 28(1):133–172. doi:10.1146/annurev.pp.28.060177.001025

    CAS  Google Scholar 

  • Cramer WA, Theg SM, Widger WR (1986) On the structure and function of cytochrome b-559. Photosynth Res 10(3):393–403

    Article  CAS  Google Scholar 

  • Drew D, Froderberg L, Baars L, de Gier JW (2003) Assembly and overexpression of membrane proteins in Escherichia coli. Biochim Biophys Acta 1610(1):3–10

    Article  PubMed  CAS  Google Scholar 

  • Fiege R, Schreiber U, Renger G, Lubitz W, Shuvalov VA (1995) Study of heme Fe(III) ligated by OH– in cytochrome b-559 and its low temperature photochemistry in intact chloroplasts. FEBS Lett 377(3):325–329

    Article  PubMed  CAS  Google Scholar 

  • Francke C, Loyal R, Ohad I, Haehnel W (1999) In vitro assembly of a β2 cytochrome b 559-like complex from the chemically synthesised β-subunit encoded by the Synechocystis sp. 6803 psbF gene. FEBS Lett 442(1):75–78

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Rubio I, Medina M, Cammack R, Alonso PJ, Martinez JI (2006) CW-EPR and ENDOR study of cytochrome c 6 from Anabaena PCC 7119. Biophys J 91(6):2250–2263

    Article  PubMed  CAS  Google Scholar 

  • García-Rubio I, Martínez JI, Picorel R, Yruela I, Alonso PJ (2003) HYSCORE spectroscopy in the cytochrome b 559 of the photosystem II reaction center. J Am Chem Soc 125(51):15846–15854

    Article  PubMed  Google Scholar 

  • Gennis RB (1987) The cytochromes of Escherichia coli. FEMS Microbiol Lett 46(4):387–399

    Article  CAS  Google Scholar 

  • Guerrero F, Sedoud A, Kirilovsky D, Rutherford AW, Ortega JM, Roncel M (2011) A high redox potential form of cytochrome c550 in photosystem II from Thermosynechococcus elongatus. J Biol Chem 286(8):5985–5994

    Article  PubMed  CAS  Google Scholar 

  • Guskov A, Kern J, Gabdulkhakov A, Broser M, Zouni A, Saenger W (2009) Cyanobacterial photosystem II at 2.9-Å resolution and the role of quinones, lipids, channels and chloride. Nat Struct Mol Biol 16(3):334–342

    Article  PubMed  CAS  Google Scholar 

  • Hung C-H, Hwang HJ, Chen Y-H, Chiu Y-F, Ke S-C, Burnap RL, Chu H-A (2010) Spectroscopic and functional characterizations of cyanobacterium Synechocystis PCC 6803 mutants on and near the heme axial ligand of cytochrome b559 in photosystem II. J Biol Chem 285(8):5653–5663

    Article  PubMed  CAS  Google Scholar 

  • Kaminskaya O, Kurreck J, Irrgang KD, Renger G, Shuvalov VA (1999) Redox and spectral properties of cytochrome b 559 in different preparations of photosystem II. Biochemistry 38(49):16223–16235

    Article  PubMed  CAS  Google Scholar 

  • Kaminskaya O, Shuvalov VA, Renger G (2007) Evidence for a novel quinone-binding site in the photosystem II (PS II) complex that regulates the redox potential of cytochrome b 559. Biochemistry 46(4):1091–1105

    Article  PubMed  CAS  Google Scholar 

  • Kapust RB, Waugh DS (1999) Escherichia coli maltose-binding protein is uncommonly effective at promoting the solubility of polypeptides to which it is fused. Prot Sci 8(8):1668–1674

    Article  CAS  Google Scholar 

  • Kohorn BD, Auchincloss AH (1991) Integration of a chlorophyll-binding protein into Escherichia coli membranes in the absence of chlorophyll. J Biol Chem 266(18):12048–12052

    PubMed  CAS  Google Scholar 

  • Kroliczewski J, Szczepaniak A (2002) In vitro reconstitution of the spinach chloroplast cytochrome b 6 protein from a fusion protein expressed in Escherichia coli. Biochim Biophys Acta 1598(1–2):177–184

    PubMed  CAS  Google Scholar 

  • Kroliczewski J, Hombek-Urban K, Szczepaniak A (2005) Integration of the thylakoid membrane protein cytochrome b 6 in the cytoplasmic membrane of Escherichia coli. Biochemistry 44(20):7570–7576

    Article  PubMed  CAS  Google Scholar 

  • Kropacheva TN, Feikema WO, Mamedov F, Feyziyev Y, Styring S, Hoff AJ (2003) Spin conversion of cytochrome b 559 in photosystem II induced by exogenous high potential quinone. Chem Phys 294(3):471–482

    Article  CAS  Google Scholar 

  • Loew GH (1983) Theorical investigations of iron porphyrins. In: Lever ABP, Gray HB (eds) Iron porphyrins. Part I. Addison-Wesley, London, pp 1–87

    Google Scholar 

  • Maier RM, Zeltz P, Kossel H, Bonnard G, Gualberto JM, Grienenberger JM (1996) RNA editing in plant mitochondria and chloroplasts. Plant Mol Biol 32(1–2):343–365

    Article  PubMed  CAS  Google Scholar 

  • Matsuda H, Butler WL (1983) Restoration of high-potential cytochrome b-559 in liposomes. Biochim Biophys Acta 724(1):123–127

    Article  CAS  Google Scholar 

  • Metz JG, Ulmer G, Bricker TM, Miles D (1983) Purification of cytochrome b-559 from oxygen-evolving photosystem II preparations of spinach and maize. Biochim Biophys Acta 725(1):203–209

    Article  CAS  Google Scholar 

  • Mulrooney SB, Waskell L (2000) High-level expression in Escherichia coli and purification of the membrane-bound form of cytochrome b 5. Prot Expr Purif 19(1):173–178

    Article  CAS  Google Scholar 

  • Ortega J, Hervás M, Losada, M (1989) Isolation and comparison of molecular properties of cytochrome b-559 from both spinach thylakoids and PSII particles. Z Naturforsch 44c:415–422

    Google Scholar 

  • Ortega JM, Hervas M, Losada M (1988) Redox and acid-base characterization of cytochrome b-559 in photosystem II particles. Eur J Biochem 171(3):449–455

    Article  PubMed  CAS  Google Scholar 

  • Pakrasi HB, Diner BA, Williams J, Arntzen CJ (1989) Deletion mutagenesis of the cytochrome b 559 protein inactivates the reaction center of photosystem II. Plant Cell 1(6):591–597

    PubMed  CAS  Google Scholar 

  • Picorel R, Chumanov G, Cotton TM, Montoya G, Toon S, Seibert M (1994) Surface-enhanced resonance Raman scattering spectroscopy of photosystem II pigment-protein complexes. J Phys Chem 98(23):6017–6022

    Article  CAS  Google Scholar 

  • Prodohl A, Volkmer T, Finger C, Schneider D (2005) Defining the structural basis for assembly of a transmembrane cytochrome. J Mol Biol 350(4):744–756

    Article  PubMed  Google Scholar 

  • Roncel M, Ortega JM, Losada M (2001) Factors determining the special redox properties of photosynthetic cytochrome b 559. Eur J Biochem 268(18):4961–4968

    Article  PubMed  CAS  Google Scholar 

  • Rothstein SJ, Gatenby AA, Willey DL, Gray JC (1985) Binding of pea cytochrome f to the inner membrane of Escherichia coli requires the bacterial secA gene product. Proc Natl Acad Sci USA 82(23):7955–7959

    Article  PubMed  CAS  Google Scholar 

  • Scheidt WR, Gouterman M (1983) Ligands, spin state, and geometry in hemes and related metalloporphyrins. In: Lever ABP, Gray HB (eds) Iron porphyrins. Part I. Addison-Wesley, London, pp 89–139

    Google Scholar 

  • Shibamoto T, Kato Y, Watanabe T (2008) Spectroelectrochemistry of cytochrome b559 in the D1-D2-Cyt b559 complex from spinach. FEBS Lett 582(10):1490–1494

    Article  PubMed  CAS  Google Scholar 

  • Shuvalov VA, Schreiber U, Heber U (1994) Spectral and thermodynamic properties of the two hemes of the D1D2cytochrome b-559 complex of spinach. FEBS Lett 337(3):226–230

    Article  PubMed  CAS  Google Scholar 

  • Shuvalov VA, Fiege R, Schreiber U, Lendzian F, Lubitz W (1995) EPR study of cytochrome in the D1D2 Cyt b-559 complex. Biochim Biophys Acta 1228(2–3):175–180

    Google Scholar 

  • Smith MA, Napier JA, Stymne S, Tatham AS, Shewry PR, Stobart AK (1994) Expression of a biologically active plant cytochrome b 5 in Escherichia coli. Biochem J 303:73–79

    PubMed  CAS  Google Scholar 

  • Stewart DH, Brudvig GW (1998) Cytochrome b 559 of photosystem II. Biochim Biophys Acta 1367(1–3):63–87

    PubMed  CAS  Google Scholar 

  • Swiatek M, Regel RE, Meurer J, Wanner G, Pakrasi HB, Ohad I, Herrmann RG (2003) Effects of selective inactivation of individual genes for low-molecular-mass subunits on the assembly of photosystem II, as revealed by chloroplast transformation: the psbEFLJ operon in Nicotiana tabacum. Mol Genet Genomics 268(6):699–710

    PubMed  CAS  Google Scholar 

  • Thompson LK, Miller AF, Buser CA, de Paula JC, Brudvig GW (1989) Characterization of the multiple forms of cytochrome b 559 in photosystem II. Biochemistry 28(20):8048–8056

    Article  PubMed  CAS  Google Scholar 

  • Weber M, Prodöhl A, Dreher C, Becker C, Underhaug J, Svane ASP, Malmendal A, Nielsen NC, Otzen D, Schneider D (2011) SDS-facilitated in vitro formation of a transmembrane B-type cytochrome is mediated by changes in local pH. J Mol Biol 407(4):594–606

    Article  PubMed  CAS  Google Scholar 

  • Yruela I, Garcia-Rubio I, Roncel M, Martinez JI, Ramiro MV, Ortega JM, Alonso PJ, Picorel R (2003) Detergent effect on cytochrome b 559 electron paramagnetic resonance signals in the photosystem II reaction centre. Photochem Photobiol Sci 2(4):437–442

    Article  PubMed  CAS  Google Scholar 

  • Yu X, Tan P, Shen G, Zhao J (2003) Recombinant PsbF from Synechococcus sp. PCC 7002 forms β:β homodimeric cytochrome b559. Chin Sci Bull 48 (6):563–569

    Google Scholar 

Download references

Acknowledgments

This work was supported by Grants AGL2008-00377, MAT2008-03461, and BFU2007-68107-C02-01 from the Spanish Ministry of Science and Innovation (MICINN), PADI CVI-261 from the Andalusia Regional Government, and DGA-GC E33 and DGA-GE B18 from Aragon Regional Government. All these Grants were partially financed by the EU FEDER Program. M. A. Luján would like to thank the FPI Fellowship Program of the MICINN for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Picorel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luján, M.A., Martínez, J.I., Alonso, P.J. et al. Reconstitution, spectroscopy, and redox properties of the photosynthetic recombinant cytochrome b 559 from higher plants. Photosynth Res 112, 193–204 (2012). https://doi.org/10.1007/s11120-012-9772-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-012-9772-3

Keywords

Navigation