Skip to main content
Log in

Heat stress and the photosynthetic electron transport chain of the lichen Parmelina tiliacea (Hoffm.) Ach. in the dry and the wet state: differences and similarities with the heat stress response of higher plants

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Thalli of the foliose lichen species Parmelina tiliacea were studied to determine responses of the photosynthetic apparatus to high temperatures in the dry and wet state. The speed with which dry thalli were activated by water following a 24 h exposure at different temperatures decreased as the temperature was increased. But even following a 24 h exposure to 50°C the fluorescence induction kinetics OJIP reflecting the reduction kinetics of the photosynthetic electron transport chain had completely recovered within 128 min. Exposure of dry thalli to 50°C for 24 h did not induce a K-peak in the fluorescence rise suggesting that the oxygen evolving complex had remained intact. This contrasted strongly with wet thalli were submergence for 40 s in water of 45°C inactivated most of the photosystem II reaction centres. In wet thalli, following the destruction of the Mn-cluster, the donation rate to photosystem II by alternative donors (e.g. ascorbate) was lower than in higher plants. This is associated with the near absence of a secondary rise peak (~1 s) normally observed in higher plants. Analysing the 820 nm and prompt fluorescence transients suggested that the M-peak (occurs around 2–5 s) in heat-treated wet lichen thalli is related to cyclic electron transport around photosystem I. Normally, heat stress in lichen thalli leads to desiccation and as consequence lichens may lack the heat-stress-tolerance-increasing mechanisms observed in higher plants. Wet lichen thalli may, therefore, represent an attractive reference system for the evaluation of processes related with heat stress in higher plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Chl:

Chlorophyll

DF:

Delayed fluorescence

F 0 :

Fluorescence intensity at 20 μs

F K :

Fluorescence intensity at ~0.3 ms

F J :

Fluorescence intensity at ~3 ms

F I :

Fluorescence intensity at ~30 ms

F P :

The maximum measured fluorescence intensity

F M :

Fluorescence intensity when all PSII reaction centres are closed

I 820 nm :

A measure for the reflected light at 820 nm

O–J–I–P–S–M:

Transient fluorescence induction transient defined by the names of its intermediate steps

P680 and P700:

The primary electron donors of photosystems II and I, respectively

PF:

Prompt fluorescence

PI:

Performance index

References

  • Barták M, Hájek J, Gloser J (2000) Heterogeneity of chlorophyll fluorescence over thalli of several foliose macrolichens exposed to adverse environmental factors: interspecific differences as related to thallus hydration and high irradiance. Photosynthetica 38:531–537

    Article  Google Scholar 

  • Black M, Pritchard HW (2002) Desiccation and survival in plants: drying without dying. CABI Publishing, Wallingford

    Book  Google Scholar 

  • Bukhov NG, Govindachary S, Egorova EA, Carpentier R (2004) Recovery of photosystem I and II activities during re-hydration of lichen Hypogymnia physodes thalli. Planta 219:110–120

    Article  PubMed  CAS  Google Scholar 

  • Caron L, Berkaloff C, Duval J-C, Jupin H (1987) Chlorophyll fluorescence transients from the diatom Phaeodactylum tricornutum: relative rates of cyclic phosphorylation and chlororespiration. Photosynth Res 11:131–139

    Article  CAS  Google Scholar 

  • Christen G, Reifarth F, Renger G (1998) On the origin of the ‘35 μs kinetics’ of P680+ reduction in photosystem II with an intact water oxidizing complex. FEBS Lett 249:49–52

    Article  Google Scholar 

  • Coxson DS (1988) Recovery of net photosynthesis and dark respiration on rehydration of the lichen Cladina mitis, and the influence of prior exposure to sulphur dioxide while desiccated. New Phytol 108:483–487

    Article  Google Scholar 

  • Delosme R (1967) Étude de l’induction de fluorescence des algues vertes et des chloroplastes au début d’une illumination intense. Biochim Biophys Acta 143:108–128

    Article  PubMed  CAS  Google Scholar 

  • Eickmeier WG, Casper C, Osmond CB (1993) Chlorophyll fluorescence in the resurrection plant Selaginella lepidophylla (Hook. & Grev.) Spring during high-light and desiccation stress, and evidence for zeaxanthin-associated photoprotection. Planta 189:30–38

    Article  CAS  Google Scholar 

  • Gauslaa Y, Solhaug KA (1998) The significance of thallus size for the water economy of the cyanobacterial old-forest lichen Degelia plumbea. Oecologia 116:76–84

    Article  Google Scholar 

  • Gauslaa Y, Solhaug KA (1999) High-light damage in air-dry thalli of the old forest lichen Lobaria pulmonaria—interactions of irradiance, exposure duration and high temperature. J Exp Bot 50:697–705

    Article  CAS  Google Scholar 

  • Goltsev V, Zaharieva I, Chernev P, Strasser RJ (2009) Delayed fluorescence in photosynthesis. Photosynth Res 101:217–232

    Article  PubMed  CAS  Google Scholar 

  • Grabolle M, Dau H (2007) Efficiency and role of loss processes in light-driven water oxidation by PSII. Physiol Plant 131:50–63

    Article  PubMed  CAS  Google Scholar 

  • Guissé B, Srivastava A, Strasser RJ (1995) The polyphasic rise of the chlorophyll a fluorescence (OKJIP) in heat-stressed leaves. Archs Sci Genéve 48:147–160

    Google Scholar 

  • Heber U, Shuvalov VA (2005) Photochemical reactions of chlorophyll in dehydrated Photosystem II: two chlorophyll forms (680 and 700 nm). Photosynth Res 84:85–91

    Article  PubMed  CAS  Google Scholar 

  • Heber U, Neimanis S, Dietz KJ (1988) Fractional control of photosynthesis by the QB protein, the cytochrome f/b6 complex and other components of the photosynthetic apparatus. Planta 173:267–274

    Article  CAS  Google Scholar 

  • Heber U, Soni V, Strasser RJ (2011) Photoprotection of reaction centers: thermal dissipation of absorbed light energy vs charge separation in lichens. Physiol Plant 142:65–78

    Article  PubMed  CAS  Google Scholar 

  • Hoffman GR, Gates DM (1970) An energy budget approach to the study of water loss in cryptogams. Bull Torrey Bot Club 97:361–366

    Article  Google Scholar 

  • Ilík P, Schansker G, Kotabová E, Váczi P, Strasser RJ, Barták M (2006) A dip in the chlorophyll fluorescence induction at 0.2–2 s in Trebouxia-possessing lichens reflects a fast reoxidation of photosystem I. A comparison with higher plants. Biochim Biophys Acta 1757:12–20

    Article  PubMed  Google Scholar 

  • Jensen M, Chakir S, Feige GB (1999) Osmotic and atmospheric dehydration effects in the lichens Hypogymnia physodes, Lobaria pulmonaria, and Peltigera aphthosa: an in vivo study of the chlorophyll fluorescence induction. Photosynthetica 37:393–404

    Article  CAS  Google Scholar 

  • Jursinic P (1986) Delayed fluorescence: current concepts and status. In: Govindjee, Amesz J, Fork DJ (eds) Light emission by plants and bacteria. Academic Press, Orlando, pp 291–328

    Google Scholar 

  • Kappen L (2000) Some aspects of the great success of lichens in Antarctica. Antarct Sci 12:314–324

    Article  Google Scholar 

  • Kappen L, Breuer M (1991) Ecological and physiological investigations in continental Antarctic cryptogams. II. Moisture relation and photosynthesis of lichens near Casey Station, Wilkes Land. Antarct Sci 3:273–278

    Google Scholar 

  • Krause GH, Weis E (1991) Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Plant Physiol Mol Biol 42:313–349

    Article  CAS  Google Scholar 

  • Lange OL, Bilger W, Rimke S, Schreiber U (1989) Chlorophyll fluorescence of lichens containing green and blue-green algae during hydration by water vapor uptake and by addition of liquid water. Bot Acta 102:306–313

    Google Scholar 

  • Lange OL, Meyer A, Zellner H, Heber U (1994) Photosynthesis and water relation of lichen soil crust: field measurements in the coastal fog zone of the Namib Desert. Funct Ecol 8:253–264

    Article  Google Scholar 

  • Lazár D (2006) The polyphasic chlorophyll a fluorescence rise measured under high intensity of exciting light. Funct Plant Biol 33:9–30

    Article  Google Scholar 

  • Neubauer C, Schreiber U (1987) The polyphasic rise of chlorophyll fluorescence upon onset of strong continuous illumination: 1. Saturation characteristics and partial control by the photosystem II acceptor side. Z Naturforsch C 42c:1246–1254

    Google Scholar 

  • Oukarroum A, El Madidi S, Strasser RJ (2006) Drought stress induced in barley cultivars (Hordeum vulgare L.) by polyethylene glycol, probed by germination, root length and chlorophyll a fluorescence rise (OJIP). Archs Sci Genève 59:65–74

    Google Scholar 

  • Oukarroum A, El Madidi S, Schansker G, Strasser RJ (2007) Probing the responses of barley cultivars (Hordeum vulgare L.) by chlorophyll a fluorescence OLKJIP under drought stress and re-watering. Environ Exp Bot 60:438–446

    Article  CAS  Google Scholar 

  • Oukarroum A, Schansker G, Strasser RJ (2009) Drought stress effects on photosystem-I-content and photosystem II thermotolerance analysed using Chl a fluorescence kinetics in barley varieties differing in their drought tolerance. Physiol Plant 137:188–199

    Article  PubMed  CAS  Google Scholar 

  • Papageorgiou GC, Govindjee (2004) Chlorophyll a fluorescence: a signature of photosynthesis. Springer, Dordrecht

    Google Scholar 

  • Rogers RW (1988) Succession and survival strategies in lichen populations on a palm trunk. J Ecol 76:759–776

    Article  Google Scholar 

  • Romeike J, Friedl T, Helms G, Ott S (2002) Genetic diversity of algal and fungal partners in four species of Umbilicaria (Lichenized Ascomycetes) along a transect of the Antarctic peninsula. Mol Biol Evol 19:1209–1217

    Article  PubMed  CAS  Google Scholar 

  • Schansker G, Srivastava A, Govindjee, Strasser RJ (2003) Characterization of the 820-nm transmission signal paralleling the chlorophyll a fluorescence rise (OJIP) in pea leaves. Funct Plant Biol 30:785–796

    Article  CAS  Google Scholar 

  • Schansker G, Tóth SZ, Strasser RJ (2005) Methylviologen and dibromothymoquinone treatments of pea leaves reveal the role of photosystem I in the Chl a fluorescence rise OJIP. Biochim Biophys Acta 1706:250–261

    Article  PubMed  CAS  Google Scholar 

  • Schansker G, Tóth SZ, Strasser RJ (2006) Dark-recovery of the Chl a fluorescence transient (OJIP) after light adaptation: the qT-component of non-photochemical quenching is related to an activated photosystem I acceptor side. Biochim Biophys Acta 1757:787–797

    Article  PubMed  CAS  Google Scholar 

  • Schansker G, Tóth SZ, Kovács L, Holzwarth AR, Garab G (2011) Evidence for a fluorescence yield change driven by a light-induced conformational change within photosystem II during the fast chlorophyll a fluorescence rise. Biochim Biophys Acta 1807:1032–1043

    Article  PubMed  CAS  Google Scholar 

  • Schreiber U, Neubauer C (1987) The polyphasic rise of chlorophyll fluorescence upon onset of strong continuous illumination: II. Partial control by the photosystem I1 donor side and possible ways of interpretation. Z Naturforsch C 42c:1255–1264

    Google Scholar 

  • Schreiber U, Neubauer C, Klughammer C (1989) Devices and methods for room-temperature fluorescence analysis. Philos Trans R Soc Lond B 323:241–251

    Article  CAS  Google Scholar 

  • Siggel U, Renger G, Stiehl HH, Rumberg B (1972) Evidence for electronic and ionic interaction between electron transport chains in chloroplasts. Biochim Biophys Acta 256:328–335

    Article  PubMed  CAS  Google Scholar 

  • Slavov C, Reus M, Holzwarth AR (2011) Two different mechanisms cooperate in the dessication-induced excited state quenching in Parmelia lichen. Abstract book of the International Workshop “Mechanisms of Non-photochemical Quenching”, p 46

  • Soni V, Strasser RJ (2008) Survival strategies cannot be devised, they do exist already: a case study on lichens. In: Allen JF, Gantt E, Golbeck JH, Osmond B (eds) Photosynthesis, energy from the Sun, 14th International Congress on Photosynthesis. Springer, Dordrecht, pp 945–949

    Google Scholar 

  • Srivastava A, Guissé B, Greppin H, Strasser RJ (1997) Regulation of antenna structure and electron transport in photosystem II of Pisum sativum under elevated temperature probed by the fast polyphasic chlorophyll a fluorescence transient: OKJIP. Biochim Biophys Acta 1320:95–106

    Article  CAS  Google Scholar 

  • Strasser BJ (1997) Donor side capacity of photosystem II probed by chlorophyll a fluorescence transients. Photosynth Res 52:147–155

    Article  CAS  Google Scholar 

  • Strasser RJ, Srivastava A, Govindjee (1995) Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria. Photochem Photobiol 61:32–42

    Article  CAS  Google Scholar 

  • Strasser RJ, Srivastava A, Tsimilli-Michael M (2004) Analysis of the chlorophyll a fluorescence transient. In: Papageorgiou GC, Govindjee (eds) Chlorophyll fluorescence: a signature of photosynthesis. Advances in photosynthesis and respiration series, vol 19. Springer, Dordrecht, pp 321–362

    Google Scholar 

  • Strasser RJ, Tsimilli-Michael M, Qiang S, Goltsev V (2010) Simultaneous in vivo recording of prompt and delayed fluorescence and 820-nm reflection changes during drying and after rehydration of the resurrection plant Haberlea rhodopensis. Biochim Biophys Acta 1797:1313–1326

    Article  PubMed  CAS  Google Scholar 

  • Tóth SZ, Schansker G, Kissimon J, Kovács L, Garab G, Strasser RJ (2005) Biophysical studies of photosystem II-related recovery processes after a heat pulse in barley seedlings (Hordeum vulgare L.). J Plant Physiol 162:181–194

    Article  PubMed  Google Scholar 

  • Tóth SZ, Schansker G, Strasser RJ (2007a) A non-invasive assay of the plastoquinone pool redox state based on the OJIP-transient. Photosynth Res 93:193–203

    Article  PubMed  Google Scholar 

  • Tóth SZ, Schansker G, Garab G, Strasser RJ (2007b) Photosynthetic electron transport activity in heat-treated barley leaves: the role of internal alternative electron donors to photosystem II. Biochim Biophys Acta 1767:295–305

    Article  PubMed  Google Scholar 

  • Tóth SZ, Puthur JT, Nagy V, Garab G (2009) Experimental evidence for ascorbate-dependent electron transport in leaves with inactive oxygen-evolving complexes. Plant Physiol 149:1568–1578

    Article  PubMed  Google Scholar 

  • Tóth SZ, Nagy V, Puthur JT, Kovács L, Garab G (2011) The physiological role of ascorbate as photosystem II electron donor: protection against photoinactivation in heat-stressed leaves. Plant Physiol 156:382–392

    Article  PubMed  Google Scholar 

  • Tsimilli-Michael M, Pêcheux M, Strasser RJ (1998) Vitality and stress adaptation of the symbionts of coral reef and temperate foraminifers probed in hospite by the fluorescence kinetics OJIP. Archs Sci Genève 51:205–240

    Google Scholar 

  • Veerman J, Vasil’ev S, Paton GD, Ramanauskas J, Bruce D (2007) Photoprotection in the lichen Parmelia sulcata: the origins of dessication-induced fluorescence quenching. Plant Physiol 145:997–1005

    Article  PubMed  CAS  Google Scholar 

  • Wolfe J, Bryant G (1999) Freezing, drying, and/or vitrification of membrane–solute–water systems. Cryobiology 39:103–129

    Article  PubMed  CAS  Google Scholar 

  • Woodward FI (1998) Do plants really need stomata? J Exp Bot 49:471–480

    Article  Google Scholar 

  • Yuan X, Xiao S, Taylor TN (2005) Lichen-like symbiosis 600 million years ago. Science 308:1017–1020

    Article  PubMed  CAS  Google Scholar 

  • Zhu XG, Govindjee, Baker N, de Sturler E, Ort D, Long S (2005) Chlorophyll a fluorescence induction kinetics in leaves predicted from a model describing each discrete step of excitation energy and electron transfer associated with Photosystem II. Planta 223:114–133

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Philippe Clerc from Jardin Botanique of Geneva for his help with the identification of P. tiliacea

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdallah Oukarroum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oukarroum, A., Strasser, R.J. & Schansker, G. Heat stress and the photosynthetic electron transport chain of the lichen Parmelina tiliacea (Hoffm.) Ach. in the dry and the wet state: differences and similarities with the heat stress response of higher plants. Photosynth Res 111, 303–314 (2012). https://doi.org/10.1007/s11120-012-9728-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-012-9728-7

Keywords

Navigation