Skip to main content

Advertisement

Log in

Microalgal biomass production: challenges and realities

  • Review
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

The maximum quantum yield (Φ max), calculated from the maximum chlorophyll a specific photosynthetic rate divided by the quantum absorption per unit chlorophyll a, is 8 photons or 0.125 mol C per mol Quanta light energy. For the average solar radiation that reaches the earth’s surface this relates to a photosynthetic yield of 1.79 g(dw) m−2 day−1 per percentage photosynthetic efficiency and it could be doubled for sunny, dry and hot areas. Many factors determine volumetric yields of mass algal cultures and it is not simply a question of extrapolating controlled laboratory rates to large scale outdoor production systems. This is an obvious mistake many algal biotechnology start-up companies make. Closed photobioreactors should be able to outperform open raceway pond cultures because of the synergistic enhancement of a reduced boundary layer and short light/dark fluctuations at high turbulences. However, this has not been shown on any large scale and to date the industrial norm for very large production systems is open raceway production ponds. Microalgal biomass production offers real opportunities for addressing issues such as CO2 sequestration, biofuel production and wastewater treatment, and it should be the preferred research emphasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Behrenfeld MJ, Prasil O, Kolber ZS, Babin M, Falkowski PG (1998) Compensatory changes in photosystem II electron turnover rates protect photosynthesis from photoinhibition. Photosynth Res 58:259–268

    Article  CAS  Google Scholar 

  • Ben-Amotz A, Avron A (1989) The biotechnology of mass culturing Dunaliella for products of commercial interest. In: Cresswell RC, Rees TAV, Shah N (eds) Algal cyanobacterial biotechnology. Longman Scientific & Technical, Essex, pp 91–114

    Google Scholar 

  • Benemann J (2008) Opportunities and challenges in algae biofuels production: a position paper. www.futureenergyevents.com

  • Bolton JR, Hall DO (1991) Maximum efficiency of photosynthesis. Photochem Photobiol 53:545–548

    Article  CAS  Google Scholar 

  • Bongi G, Long SP (1987) Light-dependant damage to photosynthesis in olive leaves during chilling and high temperature stress. Plant Cell Environ 10:241–249

    Google Scholar 

  • Borowitzka MA, Borowitzka LJ (1989) Dunaliella. In: Borowitzka MJ, Borowitzka LJ (eds) Micro-algal biotechnology. Cambridge University Press, New York, pp 27–58

    Google Scholar 

  • Burda K (2007) Dynamic of electron transfer in photosystem II. Cell Biochem Biophys 47:271–284

    Article  CAS  PubMed  Google Scholar 

  • Burlew JS (1953) Algal culture: from laboratory to pilot plant. Carnegie Institution of Washington Publication, Washington, p 357

    Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26:126–131

    Article  Google Scholar 

  • Congming L, Vonshak A (1999) Photoinhibition in outdoor Spirulina platensis cultures assessed by polyphasic chlorophyll fluorescence transients. J Appl Phycol 11:355–359

    Article  Google Scholar 

  • Cullen JJ, Lewis MR (1988) The kinetics of algal photoadaptation in the context of vertical mixing. J Plankton Res 10:1039–1063

    Article  Google Scholar 

  • Demmig-Adams B, Adams WW (1992) Photoprotection and other responses of plants to high light stress. Annu Rev Plant Physiol Plant Mol Biol 43:590–626

    Article  Google Scholar 

  • Doty MS, Oguri M (1957) Evidence for a photosynthetic daily periodicity. Limnol Oceanogr 2:37–40

    Article  Google Scholar 

  • Droop MR (1983) 25 years of algal growth kinetics: a personal view. Bot Mar 26:99–112

    Article  Google Scholar 

  • Falkowski PG, Wirick CD (1981) A simulation model of the effects of vertical mixing on primary productivity. Mar Biol 45:289–295

    Article  Google Scholar 

  • Falkowski PG, Greene R, Kolber Z (1994) Light utilization and photoinhibition of photosynthesis in marine phytoplankton. In: Baker NR, Bower JR (eds) Photoinhibition of photosynthesis. Bios Scientific Publishers Ltd, Oxford, pp 407–432

    Google Scholar 

  • Flöder S, Urable J, Kawabata Z (2002) The influence of fluctuating light intensities on species composition and diversity of natural phytoplankton communities. Oecologia 133:395–401

    Article  Google Scholar 

  • Gebhardt W (1986) Photosynthetic efficiency. Radiat Environ Biophys 25:275–288

    Article  CAS  PubMed  Google Scholar 

  • Gest H (1997) A ‘misplaced chapter’ in the history of photosynthesis research; the second publication (1796) on plant processes by Dr Jan Ingen-Housz, MD, discoverer of photosynthesis. Photosynth Res 53:65–72

    Article  CAS  Google Scholar 

  • Grobbelaar JU (1981) Infections: experiences in mini-ponds. In: Grobbelaar JU, Soeder CJ, Toerien DF (eds) Wastewater for aquaculture, UOVS Publication Series C, vol 3. UOVS, Bloemfontein, pp 116–123

    Google Scholar 

  • Grobbelaar JU (1989) Do light/dark cycles of medium frequency enhance phytoplankton productivity? J Appl Phycol 1:333–340

    Article  Google Scholar 

  • Grobbelaar JU (1994) Turbulence in mass algal cultures and the role of light/dark fluctuations. J Appl Phycol 6:331–335

    Article  Google Scholar 

  • Grobbelaar JU (2004) Algal Nutrition. In: Richmond A (ed) Handbook on microalgal culture. Blackwell Science, Malden, pp 97–115

    Google Scholar 

  • Grobbelaar JU (2006) Photosynthetic response and acclimation of microalgae to light fluctuations. In: Subba-Rao DV (ed) Algal cultures analogues of blooms, applications. Science Publishers, Enfield/Plymouth, pp 671–683

    Google Scholar 

  • Grobbelaar JU (2009a) Upper limits of photosynthetic productivity and problems of scaling. J Appl Phycol 21:519–522

    Article  Google Scholar 

  • Grobbelaar JU (2009b) Factors governing algal growth in photobioreactors: the “open” versus the “closed” debate. J Appl Phycol 21:489–492

    Article  CAS  Google Scholar 

  • Grobbelaar JU, Kurano N (2003) A novel photobioreactor for achieving extreme high yields. J Appl Phycol 15:121–126

    Article  CAS  Google Scholar 

  • Grobbelaar JU, Soeder CJ (1985) Respiration losses in planktonic green algae cultivated in raceway ponds. J Plankton Res 7(4):497–506

    Article  Google Scholar 

  • Grobbelaar JU, Nedbal L, Tichy V, Setlik I (1995) Variations in some photosynthetic characteristics of microalgae cultured in outdoor thin-layered sloping reactors. J Appl Phycol 7:243–260

    Google Scholar 

  • Grobbelaar JU, Nedbal L, Tichy V (1996) Influence of high frequency light/dark fluctuations on photosynthetic characteristics of microalgae photoacclimated to different light intensities and implications for mass algal cultivation. J Appl Phycol 8(4–5):335–343

    Article  CAS  Google Scholar 

  • Grobbelaar JU, Mohn FH, Soeder CJ (2000) Potential of algal mass cultures to fix CO2 emissions from industrial point sources. Algol Stud 98:169–183

    Google Scholar 

  • Herzig R, Falkowski PG (1989) Nitrogen limitation in Isochrysis galbana. 1. Photosynthetic energy conversion and growth efficiencies. J Phycol 25:462–471

    Article  CAS  Google Scholar 

  • Huzisige H, Ke B (1993) Dynamics of the history of photosynthesis research. Photosynth Res 38:185–209

    Article  CAS  Google Scholar 

  • Jassby AD, Platt T (1976) Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnol Oceanogr 21:540–547

    Article  CAS  Google Scholar 

  • Jewson DH, Wood RB (1975) Some effects on integral photosynthesis of artificial circulation of phytoplankton through light gradients. Verh Int Verein Limnol 19:1037–1044

    Google Scholar 

  • Kok B (1953) Experiments on photosynthesis by Chlorella in flashing light. In: Burlew JS (ed) Algal culture: from laboratory to pilot plant, vol 600. Carnegie Institution of Washington Publication, Washington. pp 63–75

  • Laws EA, Terry KL, Wickman J, Chalup MS (1983) A simple algal production system designed to utilize the flashing light effect. Biotechnol Bioeng 25:2319–2335

    Article  CAS  PubMed  Google Scholar 

  • Lee Y-K (2001) Microalgal mass culture systems and methods: their limitation and potential. J Appl Phycol 13:307–315

    Article  Google Scholar 

  • Legendre L, Rochet M, Demers S (1986) Sea-ice microalgae to test the hypothesis of photosynthetic adaptation to high frequency light fluctuations. J Exp Mar Biol Ecol 97:321–326

    Article  Google Scholar 

  • Litchman E (1998) Population and community responses of phytoplankton to fluctuating light. Oecologia 117:247–257

    Article  Google Scholar 

  • Nicklisch A, Fietz S (2001) The influence of light fluctuations on growth and photosynthesis of Stephanodiscus neoastrea (diatom) and Planktothrix agardhii (cyanobacterium). Arch Hydrobiol 151:141–156

    Google Scholar 

  • Oswald WJ (1980) Algal production—problems, achievements and potential. In: Shelef G, Soeder CJ (eds) Algae biomass. Elsevier/North Holland Biomedical Press, Amsterdam, pp 1–8

    Google Scholar 

  • Pirt SJ (1986) The thermodynamic efficiency (quantum demand) and dynamics of photosynthetic growth. New Phytol 102:3–37

    Article  Google Scholar 

  • Pirt SJ, Lee Y-K, Richmond A, Pirt MW (1980) The photosynthetic efficiency of chlorella biomass growth with reference to solar energy utilization. J Chem Technol Biotechnol 30:25–34

    Article  CAS  Google Scholar 

  • Prasil O, Adir N and Ohad I (1992) Dynamics of photosystem II: mechanisms of photoinhibition and recovery processes. In: Barber J (ed) Topics in photosynthesis, the photosystems: structure, function and molecular biology, vol 11. Elsevier, Amsterdam, pp 295–348

  • Pringsheim EG (1950) The soil-water culture technique for growing algae. In: Prescott JB, Tiffany LH (eds) Culturing of algae. The Charles F. Kettering Foundation, Dayton, pp 19–26

    Google Scholar 

  • Pulz O (2001) Photobioreactors: production systems for phototrophic microorganisms. Appl Microbiol Biotechnol 57:287–293

    Article  CAS  PubMed  Google Scholar 

  • Richmond A (2004) Biological principals of mass cultivation. In: Richmond A (ed) Handbook of microalgal culture: biotechnology, applied phycology. Blackwell Science, London, pp 125–177

    Google Scholar 

  • Richmond A, Becker EW (1986) Technological aspects of mass cultivation—A general outline. In: Richmond A (ed) Handbook of microalgal mass culture. CRC Press, Inc, Boca Raton, pp 245–263

    Google Scholar 

  • Setlik I, Sust M, Malek I (1970) Dual purpose open circulation units for large scale culture of algae in temperate zones. 1. Basic design consideration and scheme of pilot plant. Algol Stud 1:111–164

    Google Scholar 

  • Soeder CJ (1980) The scope of microalgae for food and feed. In: Shelef G, Soeder CJ (eds) Algae biomass. Elsevier/North Holland Biomedical Press, Amsterdam, pp 9–20

    Google Scholar 

  • Sorokin C (1957) Changes in photosynthetic activity in the course of cell development in Chlorella. Plant Physiol 10:659–666

    Article  CAS  Google Scholar 

  • Stephenson AL, Dennis JS, Howe CJ, Scott SA, Smith AG (2010) Influence of nitrogen-limitation regime on the production by Chlorella vulgaris of lipids for biodiesel feedstocks. Biofuels 1:47–58

    CAS  Google Scholar 

  • Sukenik A, Bennett J, Falkowski PG (1987) Light-saturated photosynthesis—limitation by electron transport or carbon fixation. Biochim Biophys Acta 891:205–215

    Article  CAS  Google Scholar 

  • Terry KL (1986) Photosynthesis in modulated light: quantitative dependence of photosynthetic enhancement on flashing rate. Biotechnol Bioeng 28:988–995

    Article  CAS  PubMed  Google Scholar 

  • Tredici MR (2004) Mass production of microalgae: photobioreactors. In: Richmond A (ed) Handbook of microalgal culture biotechnology and applied phycology. Blackwell Science, Oxford, pp 273–280

    Google Scholar 

  • Tredici MR (2010) Photobiology of microalgae mass cultures: understanding the tools for the next green revolution. Biofuels 1:143–162

    CAS  Google Scholar 

  • Vonshak A (1986) Laboratory techniques for the cultivation of microalgae. In: Richmond A (ed) Handbook of microalgal mass culture. Boca Raton, CRC Press, pp 117–145

    Google Scholar 

  • Vonshak A, Torzillo G, Masojidek J, Boussiba S (2001) Sub-optimal morning temperature induces photoinhibition in dense outdoor cultures of the alga Monodus subterraneus (Eustigmatophyta). Plant Cell Environ 24:1113–1118

    Article  Google Scholar 

  • Walker DA (2009) Biofuels, facts, fantasy and feasibility. J Appl Phycol 21:509–517

    Article  Google Scholar 

  • Wassink EC, Kok B, van Oorschot JLP (1953) The efficiency of light-energy conversion in Chlorella cultures compared to higher plants. In: Burlew JS (ed) Algal culture from laboratory to pilot plant, vol 600. Carnegie Institution of Washington Publication, Washington, pp 55–62

    Google Scholar 

  • Woźniak B, Dera J, Ficek D, Ostrowska M, Majchrowska R (2002) Dependence of the photosynthetic quantum yield in oceans on environmental factors. Oceanologia 44:439–459

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johan U. Grobbelaar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grobbelaar, J.U. Microalgal biomass production: challenges and realities. Photosynth Res 106, 135–144 (2010). https://doi.org/10.1007/s11120-010-9573-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-010-9573-5

Keywords

Navigation