Skip to main content
Log in

Cyclic electron flow around photosystem I in unicellular green algae

  • Review
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Cyclic electron flow around PSI, or cyclic photophosphorylation, is the photosynthetic process which recycles the reducing equivalents produced by photosystem I in the stroma towards the plastoquinone pool. Through the activity of cytochrome b 6 f, which also transfers protons across the membrane, it promotes the synthesis of ATP. The literature dealing with cyclic electron flow in unicellular algae is far less abundant than it is for plants. However, in the chloroplast of algae such as Chlorella or Chlamydomonas, an efficient carbohydrate catabolism renders the redox poise much more reducing than in plant chloroplasts. It is therefore worthwhile highlighting the specific properties of unicellular algae because cyclic electron flow is highly dependent upon the accumulation of these stromal reducing equivalents. Such an increase of reducing power in the stroma stimulates the reduction of plastoquinones, which is the limiting step of cyclic electron flow. In anaerobic conditions in the dark, this reaction can lead to a fully reduced plastoquinone pool and induce state transitions, the migration of 80% of light harvesting complexes II and 20% of cytochrome b 6 f complex from the PSII-enriched grana to the PSI-enriched lamella. These ultrastructural changes have been proposed to further enhance cyclic electron flow by increasing PSI antenna size, and forming PSI-cyt b 6 f supercomplexes. These hypotheses are discussed in light of recently published data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

PSII:

Photosystem II

PSI:

Photosystem I

P700 :

Primary electron donor of PSI (reduced form)

P700 + :

Primary electron donor of PSI (oxidized form)

PC:

Plastocyanine

PQ:

Plastoquinone

PQH2 :

Plastoquinol

Fd:

Ferredoxine

DCMU:

3(3,4-Dichlorophenyl)-1,1-dimethylurea

HA:

Hydroxylamine

MV:

Methylviologen

References

  • Allen JF (2003) Cyclic, pseudocyclic and noncyclic photophosphorylation: new links in the chain. Trends Plant Sci 8(1):15–19

    Article  CAS  PubMed  Google Scholar 

  • Alric J, Lavergne J, Rappaport F (2010) Redox and ATP control of photosynthetic cyclic electron flow in Chlamydomonas reinhardtii (I) aerobic conditions. Biochim Biophys Acta 1797(1):44–51

    Article  CAS  PubMed  Google Scholar 

  • Arnon DI, Allen MB et al (1954) Photosynthesis by isolated chloroplasts. Nature 174(4426):394–396

    Article  CAS  PubMed  Google Scholar 

  • Arnon DI, Whatley FR et al (1955) Vitamin K as a cofactor of photosynthetic phosphorylation. Biochim Biophys Acta 16(4):607–608

    Article  CAS  PubMed  Google Scholar 

  • Bennoun P (1982) Evidence for a respiratory chain in the chloroplast. Proc Natl Acad Sci USA 79(14):4352–4356

    Article  CAS  PubMed  Google Scholar 

  • Bennoun P (1983) Effects of mutations and of ionophore on chlororespiration in Chlamydomonas reinhardtii. FEBS Lett 156(2):363–365

    Article  CAS  Google Scholar 

  • Bennoun P (1994) Chlororespiration revisited: mitochondrial-plastid interactions in Chlamydomonas. Biochim Biophys Acta 1186(1–2):59–66

    CAS  Google Scholar 

  • Bennoun P (2001) Chlororespiration and the process of carotenoid biosynthesis. Biochim Biophys Acta 1506(2):133–142

    Article  CAS  PubMed  Google Scholar 

  • Bulté L et al (1990) ATP control on state transitions in vivo in Chlamydomonas reinhardtii. Biochim Biophys Acta 1020(1):72–80

    Article  Google Scholar 

  • Cardol P, Gloire G et al (2003) Photosynthesis and state transitions in mitochondrial mutants of Chlamydomonas reinhardtii affected in respiration. Plant Physiol 133(4):2010–2020

    Article  CAS  PubMed  Google Scholar 

  • Cardol P, Alric J et al (2009) Impaired respiration discloses the physiological significance of state transitions in Chlamydomonas. Proc Natl Acad Sci USA 106(37):15979–15984

    Article  CAS  PubMed  Google Scholar 

  • Cournac L, Latouche G et al (2002) In vivo interactions between photosynthesis, mitorespiration, and chlororespiration in Chlamydomonas reinhardtii. Plant Physiol 129(4):1921–1928

    Article  CAS  PubMed  Google Scholar 

  • DalCorso G, Pesaresi P et al (2008) A complex containing PGRL1 and PGR5 is involved in the switch between linear and cyclic electron flow in Arabidopsis. Cell 132(2):273–285

    Article  CAS  PubMed  Google Scholar 

  • Delepelaire P, Wollman FA (1985) Correlations between fluorescence and phosphorylation changes in thylakoid membranes of Chlamydomonas reinhardtii in vivo: a kinetic analysis. Biochimica et Biophysica Acta (BBA)—Bioenergetics 809(2):277–283

    Article  CAS  Google Scholar 

  • Depege N, Bellafiore S et al (2003) Role of chloroplast protein kinase Stt7 in LHCII phosphorylation and state transition in Chlamydomonas. Science 299(5612):1572–1575

    Article  CAS  PubMed  Google Scholar 

  • Finazzi G (2005) The central role of the green alga Chlamydomonas reinhardtii in revealing the mechanism of state transitions. J Exp Bot 56(411):383–388

    Article  CAS  PubMed  Google Scholar 

  • Finazzi G, Forti G (2004) Metabolic Flexibility of the Green Alga Chlamydomonas reinhardtii as Revealed by the Link between State Transitions and Cyclic Electron Flow. Photosynth Res 82(3):327–338

    Article  CAS  PubMed  Google Scholar 

  • Finazzi G, Furia A et al (1999) State transitions, cyclic and linear electron transport and photophosphorylation in Chlamydomonas reinhardtii. Biochim Biophys Acta 1413(3):117–129

    Article  CAS  PubMed  Google Scholar 

  • Finazzi G, Barbagallo RP et al (2001) Photoinhibition of Chlamydomonas reinhardtii in State 1 and State 2: damages to the photosynthetic apparatus under linear and cyclic electron flow. J Biol Chem 276(25):22251–22257

    Article  CAS  PubMed  Google Scholar 

  • Finazzi G, Rappaport F et al (2002) Involvement of state transitions in the switch between linear and cyclic electron flow in Chlamydomonas reinhardtii. EMBO Rep 3(3):280–285

    Article  CAS  PubMed  Google Scholar 

  • Finazzi G, Johnson GN et al (2006) Nonphotochemical quenching of chlorophyll fluorescence in Chlamydomonas reinhardtii. Biochemistry 45(5):1490–1498

    Article  CAS  PubMed  Google Scholar 

  • Forti G, Furia A et al (2003) In vivo changes of the oxidation-reduction state of NADP and of the ATP/ADP cellular ratio linked to the photosynthetic activity in Chlamydomonas reinhardtii. Plant Physiol 132(3):1464–1474

    Article  CAS  PubMed  Google Scholar 

  • Gans P, Rebeille F (1990) Control in the dark of the plastoquinone redox state by mitochondrial activity in Chlamydomonas reinhardtii. Biochim Biophys Acta 1015(1):150–155

    Article  CAS  Google Scholar 

  • Hoefnagel MHN, Atkin OK et al (1998) Interdependence between chloroplasts and mitochondria in the light and the dark. Biochimica et Biophysica Acta (BBA)—Bioenergetics 1366(3):235–255

    Article  CAS  Google Scholar 

  • Iwai M, Takizawa K, Tokutsu R, Okamuro A, Takahashi Y, Minagawa J (2010) Isolation of the elusive supercomplex that drives cyclic electron flow in photosynthesis. Nature 464(7292):1210–1213

    Article  Google Scholar 

  • Jans F et al (2008) A type II NAD(P)H dehydrogenase mediates light-independent plastoquinone reduction in the chloroplast of Chlamydomonas. Proc Natl Acad Sci USA 105(51):20546–20551

    Article  CAS  PubMed  Google Scholar 

  • Joliot P (1965) Cinétiques des réactions liées a l’émission d’oxygène photosynthétique. Biochim Biophys Acta 102(1):116–134

    Article  CAS  PubMed  Google Scholar 

  • Joliot P, Joliot A (2002) Cyclic electron transfer in plant leaf. Proc Natl Acad Sci USA 99(15):10209–10214

    Article  CAS  PubMed  Google Scholar 

  • Joliot P, Joliot A et al (2006) “Cyclic electron transfer around photosystem I.” Advances in photosynthesis and respiration. In: Golbeck JH (Ed) Photosystem I: the light-driven plastocyanin: ferredoxin oxidoreductase. Springer, Dordrecht 24:639–656

  • Kramer DM, Avenson TJ et al (2004) Dynamic flexibility in the light reactions of photosynthesis governed by both electron and proton transfer reactions. Trends Plant Sci 9(7):349–357

    Article  CAS  PubMed  Google Scholar 

  • Maison-Peteri B, Etienne AL (1977) Effects of sodium azide on photosystem II of Chlorella pyrenoidosa. Biochim Biophys Acta 459(1):10–19

    Article  CAS  PubMed  Google Scholar 

  • Maxwell PC, Biggins J (1976) Role of cyclic electron transport in photosynthesis as measured by the photoinduced turnover of P700 in vivo. Biochemistry 15(18):3975–3981

    Article  CAS  PubMed  Google Scholar 

  • Meyer Zu Tittingdorf JM, Rexroth S et al (2004) The stoichiometry of the chloroplast ATP synthase oligomer III in Chlamydomonas reinhardtii is not affected by the metabolic state. Biochim Biophys Acta 1659(1):92–99

    Article  CAS  PubMed  Google Scholar 

  • Mitchell P (1975a) The protonmotive Q cycle: a general formulation. FEBS Lett 59(2):137–139

    Article  CAS  PubMed  Google Scholar 

  • Mitchell P (1975b) Protonmotive redox mechanism of the cytochrome b-c1 complex in the respiratory chain: protonmotive ubiquinone cycle. FEBS Lett 56(1):1–6

    Article  CAS  PubMed  Google Scholar 

  • Petroutsos D, Terauchi AM et al (2009) PGRL1 participates in iron-induced remodeling of the photosynthetic apparatus and in energy metabolism in Chlamydomonas reinhardtii. J Biol Chem 284(47):32770–32781

    Article  CAS  PubMed  Google Scholar 

  • Pogoryelov D, Reichen C et al (2007) The oligomeric state of c rings from cyanobacterial F-ATP synthases varies from 13 to 15. J Bacteriol 189(16):5895–5902

    Article  CAS  PubMed  Google Scholar 

  • Rumeau D, Peltier G et al (2007) Chlororespiration and cyclic electron flow around PSI during photosynthesis and plant stress response. Plant Cell Environ 30(9):1041–1051

    Article  CAS  PubMed  Google Scholar 

  • Seelert H, Poetsch A et al (2000) Structural biology. Proton-powered turbine of a plant motor. Nature 405(6785):418–419

    Article  CAS  PubMed  Google Scholar 

  • Shikanai T, Munekage Y et al (2002) Regulation of proton-to-electron stoichiometry in photosynthetic electron transport: physiological function in photoprotection. J Plant Res 115(1117):3–10

    Article  CAS  PubMed  Google Scholar 

  • Tagawa K, Tsujimoto HY et al (1963) Role of chloroplast ferredoxin in the energy conversion process of photosynthesis. Proc Natl Acad Sci USA 49:567–572

    Article  CAS  PubMed  Google Scholar 

  • Tapie P, Choquet Y et al (1984) Orientation of photosystem-I pigments. Investigation by low-temperature linear dichroism and polarized fluorescence emission. Biochim Biophys Acta 767(1):57–69

    Article  CAS  Google Scholar 

  • Tolleter D, Ghysels B, et al Reduced non-photochemical quenching and enhanced hydrogen production in a PGRL1 Chlamydomonas knock-out mutant affected in cyclic electron flow around photosystem I. (In preparation)

  • Vallon O, Bulté L et al (1991) Lateral redistribution of cytochrome b6/f complexes along thylakoid membranes upon state transitions. Proc Natl Acad Sci USA 88(18):8262–8266

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are indebted to Fabrice Rappaport and Xenie Johnson for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Alric.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alric, J. Cyclic electron flow around photosystem I in unicellular green algae. Photosynth Res 106, 47–56 (2010). https://doi.org/10.1007/s11120-010-9566-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-010-9566-4

Keywords

Navigation