Skip to main content

A Supercomplex of Cytochrome bf and Photosystem I for Cyclic Electron Flow

  • Chapter
  • First Online:
Cytochrome Complexes: Evolution, Structures, Energy Transduction, and Signaling

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 41))

Summary

In oxygen-evolving photosynthesis, photochemical energy conversion occurs via electron transport in the thylakoid membranes, resulting in the reduction of NADP+ in the stroma and the concomitant pumping of protons into the thylakoid lumen. Those electrons flow into two different pathways in the thylakoid membranes: the linear electron flow pathway from water to NADP+ via photosystem II and photosystem I (PSI) in series and the cyclic electron flow pathway around PSI. While the operational site(s) for the cyclic electron flow has been elusive, recent studies are unraveling its molecular details. After providing an overview of the general understanding of the cyclic electron flow, this review focuses on a recent report on the super-supercomplex that is composed of the cytochrome b 6 f complex, photosystem I with its own light-harvesting complex, the light-harvesting complex for photosystem II, and the ferredoxin-NADPH oxidoreductase, which exhibits cyclic electron flow in the green unicellular alga Chlamydomonas reinhardtii.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AA:

Antimycin A

CEF:

Cyclic electron flow

Cyt bf :

cytochrome b 6 f complex

DBMIB:

2,5-dibromo-3-methyl-6-isopropylbenzoquinone

DCMU:

3-(3,4-Dichlorophenyl)-1,1-dimethylurea

DMBQ:

2,6-dimethyl-p-benzoquinone

FCCP:

Carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone

Fd:

Ferredoxin

FNR:

Ferredoxin-NADPH oxidoreductase

FQR:

Ferredoxin-plastoquinone oxidoreductase

LEF:

Linear electron flow

LHCI and LHCII:

Light-harvesting complex protein I and II

NDH:

NAD(P)H dehydrogenase

NPQ:

Non-photochemical quenching

Pc:

Plastocyanin

PQ:

Plastoquinone

PSI and PSII:

Photosystem I and II

References

  • Allen JF (1992) Protein phosphorylation in regulation of photosynthesis. Biochim Biophys Acta 1098:275–335

    Article  CAS  PubMed  Google Scholar 

  • Allen JF (2003) Cyclic, pseudocyclic and noncyclic photophosphorylation: new links in the chain. Trends Plant Sci 8:15–19

    Article  CAS  PubMed  Google Scholar 

  • Bellafiore S, Barneche F, Peltier G, Rochaix J-D (2005) State transitions and light adaptation require chloroplast thylakoid protein kinase STN7. Nature 433:892–895

    Article  CAS  PubMed  Google Scholar 

  • Björkman O, Demmig B (1987) Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta 170:489–504

    Article  PubMed  Google Scholar 

  • Breyton C, Nandha B, Johnson GN, Joliot P, Finazzi G (2006) Redox modulation of cyclic electron flow around photosystem I in C3 plants. Biochemistry 45:13465–13475

    Article  CAS  PubMed  Google Scholar 

  • Bulté L, Gans P, Rebéillé F, Wollman F-A (1990) ATP control on state transitions in vivo in Chlamydomonas reinhardtii. Biochim Biophys Acta 1020:72–80

    Article  Google Scholar 

  • DalCorso G, Pesaresi P, Masiero S, Aseeva E, Schunemann D, Finazzi G, Joliot P, …, Leister D (2008) A complex containing PGRL1 and PGR5 is involved in the switch between linear and cyclic electron flow in Arabidopsis. Cell 132:273–285

    Google Scholar 

  • Finazzi G, Furia A, Barbagallo RP, Forti G (1999) State transitions, cyclic and linear electron transport and photophosphorylation in Chlamydomonas reinhardtii. Biochim Biophys Acta 1413:117–129

    Article  CAS  PubMed  Google Scholar 

  • Finazzi G, Rappaport F, Furia A, Fleischmann M, Rochaix J-D, Zito F, Forti G (2002) Involvement of state transitions in the switch between linear and cyclic electron flow in Chlamydomonas reinhardtii. EMBO Rep 3:280–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fisher N, Kramer DM (2014) Non-photochemical reduction of thylakoid photosynthetic redox carriers in vitro: relevance to cyclic electron flow around photosystem I? Biochim Biophys Acta 1837:1944–1954

    Article  CAS  PubMed  Google Scholar 

  • Hamel P, Olive J, Pierre Y, Wollman F-A, de Vitry C (2000) A new subunit of cytochrome b 6 f complex undergoes reversible phosphorylation upon state transition. J Biol Chem 275:17072–17079

    Article  CAS  PubMed  Google Scholar 

  • Hertle AP, Blunder T, Wunder T, Pesaresi P, Pribil M, Armbruster U, Leister D (2013) PGRL1 is the elusive ferredoxin-plastoquinone reductase in photosynthetic cyclic electron flow. Mol Cell 49:511–523

    Article  CAS  PubMed  Google Scholar 

  • Houille-Vernes L, Rappaport F, Wollman F-A, Alric J, Johnson X (2011) Plastid terminal oxidase 2 (PTOX2) is the major oxidase involved in chlororespiration in Chlamydomonas. Proc Natl Acad Sci U S A 108:20820–20825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang L, Cobessi D, Tung EY, Berry EA (2005) Binding of the respiratory chain inhibitor antimycin to the mitochondrial bc 1 complex: a new crystal structure reveals an altered intramolecular hydrogen-bonding pattern. J Mol Biol 351:573–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwai M, Takizawa K, Tokutsu R, Okamuro A, Takahashi Y, Minagawa J (2010) Isolation of the elusive supercomplex that drives cyclic electron flow in photosynthesis. Nature 464:1210–1213

    Article  CAS  PubMed  Google Scholar 

  • Johnson X, Steinbeck J, Dent RM, Takahashi H, Richaud P, Ozawa S, Houille-Vernes L, …, Alric J (2014) Proton gradient regulation 5-mediated cyclic electron flow under ATP- or redox-limited conditions: a study of ΔATPase pgr5 and ΔrbcL pgr5 mutants in the green alga Chlamydomonas reinhardtii. Plant Physiol 165:438–452

    Google Scholar 

  • Joliot P, Joliot A (2002) Cyclic electron transfer in plant leaf. Proc Natl Acad Sci U S A 99:10209–10214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laisk A (1993) Mathematical modelling of free-pool and channelled electron transport in photosynthesis: evidence for a functional supercomplex around photosystem 1. Proc Biol Sci 251:243–251

    Article  CAS  Google Scholar 

  • Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB, Terry A, …, Grossman AR (2007) The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318:245–250

    Google Scholar 

  • Minagawa J (2011) State transitions – the molecular remodeling of photosynthetic supercomplexes that controls energy flow in the chloroplast. Biochim Biophys Acta 1807:897–905

    Article  CAS  PubMed  Google Scholar 

  • Mitchell P (1976) Possible molecular mechanisms of the protonmotive function of cytochrome systems. J Theor Biol 62:327–367

    Article  CAS  PubMed  Google Scholar 

  • Moss DA, Bendall DS (1984) Cyclic electron transport in chloroplasts. The Q-cycle and the site of action of antimycin. Biochim Biophys Acta 767:389–395

    Article  CAS  Google Scholar 

  • Munekage Y, Hojo M, Meurer J, Endo T, Tasaka M, Shikanai T (2002) PGR5 is involved in cyclic electron flow around photosystem I and is essential for photoprotection in Arabidopsis. Cell 110:361–371

    Article  CAS  PubMed  Google Scholar 

  • Munekage Y, Hashimoto M, Miyake C, Tomizawa K, Endo T, Tasaka M, Shikanai T (2004) Cyclic electron flow around photosystem I is essential for photosynthesis. Nature 429:579–582

    Article  CAS  PubMed  Google Scholar 

  • Nagy G, Unnep R, Zsiros O, Tokutsu R, Takizawa K, Porcar L, Moyet L, …, Minagawa J (2014) Chloroplast remodeling during state transitions in Chlamydomonas reinhardtii as revealed by noninvasive techniques in vivo. Proc Natl Acad Sci U S A 111:5042–5047

    Google Scholar 

  • Ogawa T (1991) A gene homologous to the subunit-2 gene of NADH dehydrogenase is essential to inorganic carbon transport of Synechocystis PCC6803. Proc Natl Acad Sci U S A 88:4275–4279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petroutsos D, Terauchi AM, Busch A, Hirschmann I, Merchant SS, Finazzi G, Hippler M (2009) PGRL1 participates in iron-induced remodeling of the photosynthetic apparatus and in energy metabolism in Chlamydomonas reinhardtii. J Biol Chem 284:32770–32781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sacksteder CA, Kanazawa A, Jacoby ME, Kramer DM (2000) The proton to electron stoichiometry of steady-state photosynthesis in living plants: a proton-pumping Q cycle is continuously engaged. Proc Natl Acad Sci U S A 97:14283–14288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seelert H, Poetsch A, Dencher NA, Engel A, Stahlberg H, Muller DJ (2000) Structural biology. Proton-powered turbine of a plant motor. Nature 405:418–419

    Article  CAS  PubMed  Google Scholar 

  • Shikanai T (2007) Cyclic electron transport around photosystem I: genetic approaches. Annu Rev Plant Biol 58:199–217

    Article  CAS  PubMed  Google Scholar 

  • Sugimoto K, Okegawa Y, Tohri A, Long TA, Covert SF, Hisabori T, Shikanai T (2013) A single amino acid alteration in PGR5 confers resistance to antimycin A in cyclic electron transport around PSI. Plant Cell Physiol 54:1525–1534

    Article  CAS  PubMed  Google Scholar 

  • Tagawa K, Tsujimoto HY, Arnon DI (1963) Role of chloroplast ferredoxin in the energy conversion process of photosynthesis. Proc Natl Acad Sci U S A 49:567–572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi H, Clowez S, Wollman FA, Vallon O, Rappaport F (2013) Cyclic electron flow is redox-controlled but independent of state transition. Nat Commun 4:1954

    PubMed  PubMed Central  Google Scholar 

  • Terashima M, Petroutsos D, Hudig M, Tolstygina I, Trompelt K, Gabelein P, Fufezan C, …, Hippler M (2012) Calcium-dependent regulation of cyclic photosynthetic electron transfer by a CAS, ANR1, and PGRL1 complex. Proc Natl Acad Sci U S A 109:17717–17722

    Google Scholar 

  • Zhang H, Whitelegge JP, Cramer WA (2001) Ferredoxin:NADP+ oxidoreductase is a subunit of the chloroplast cytochrome b 6 f complex. J Biol Chem 276:38159–38165

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work done in my laboratory was supported in part by the New Energy and Industrial Technology Development Organization, the Japan Science and Technology Agency, the Japan Society for the Promotion of Science, and the Ministry of Education, Culture, Sports, Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Minagawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Minagawa, J. (2016). A Supercomplex of Cytochrome bf and Photosystem I for Cyclic Electron Flow. In: Cramer, W., Kallas, T. (eds) Cytochrome Complexes: Evolution, Structures, Energy Transduction, and Signaling. Advances in Photosynthesis and Respiration, vol 41. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7481-9_23

Download citation

Publish with us

Policies and ethics