Skip to main content

Advertisement

Log in

What governs the reaction center excitation wavelength of photosystems I and II?

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

The sun’s spectrum harvested through photosynthesis is the primary source of energy for life on earth. Plants, green algae, and cyanobacteria—the major primary producers on earth—utilize reaction centers that operate at wavelengths of 680 and 700 nm. Why were these wavelengths “chosen” in evolution? This study analyzes the efficiency of light conversion into chemical energy as a function of hypothetical reaction center absorption wavelengths given the sun’s spectrum and the overpotential cost associated with charge separation. Surprisingly, it is found here that when taking into account the empirical charge separation cost the range 680–720 nm maximizes the conversion efficiency. This suggests the possibility that the wavelengths of photosystem I and II were optimized at some point in their evolution for the maximal utilization of the sun’s spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

RCE:

Reaction center excitation energy

PS:

Photosystem

References

  • Archer MD, Bolton JR (1990) Requirements for ideal performance of photochemical and photovoltaic solar energy converters. J Phys Chem 94:8028–8036

    Article  CAS  Google Scholar 

  • Arntz AM, DeLucia EH et al (2000a) Fitness effects of a photosynthetic mutation across contrasting environments. J Evol Biol 13:792–803

    Article  Google Scholar 

  • Arntz AM, DeLucia EH et al (2000b) Variation in photosynthetic rate affects fecundity and survivorship. Ecology 81(9):2567–2576

    Article  Google Scholar 

  • ASTM G173-03e1 Standard tables for reference solar spectral irradiances: direct normal and hemispherical on 37° tilted surface

  • Bjorn LO, Papageorgiou GC et al (2009) A viewpoint: why chlorophyll a? Photosynth Res 99(2):85–98

    Article  PubMed  CAS  Google Scholar 

  • Blankenship RB (2001) Molecular mechanisms of photosynthesis. Blackwell Science Ltd., Oxford

    Google Scholar 

  • Bolton JR, Hall DO (1991) The maximum efficiency of photosynthesis. Photochem Photobiol 53(4):545–548

    Article  CAS  Google Scholar 

  • Bolton JR, Strickler SJ et al (1985) Limiting and realizable efficiencies of solar photolysis of water. Nature 316:495–500

    Article  CAS  Google Scholar 

  • Buiteveld H, Hakvoort JMH et al (1994) The optical properties of pure water. SPIE Proc Ocean Opt XII 2258:174–183

  • Butler WL (1978) Energy distribution in the photochemical apparatus of photosynthesis. Annu Rev Plant Physiol 29:345–378

    Article  CAS  Google Scholar 

  • Connolly JS, Samuel SB et al (1982) Fluorescence lifetimes of chlorophyll a: solvent, concentration and oxygen dependence. Photochem Photobiol 36:565

    Article  CAS  Google Scholar 

  • Demmig-Adams B, Adams WW et al (2006) Photoprotection, photoinhibition, gene regulation, and environment. In Advances in photosynthesis and respiration, vol 21. Springer Press, The Netherlands

  • Falkowski PG, Raven JA (2007) Aquatic photosynthesis. Princeton University Press, Princeton

    Google Scholar 

  • Forti G, Furia A et al (2003) In vivo changes of the oxidation-reduction state of NADP and of the ATP/ADP cellular ratio linked to the photosynthetic activity in Chlamydomonas reinhardtii. Plant Physiol 132(3):1464–1474

    Article  PubMed  CAS  Google Scholar 

  • Gould SJ, Lewontin RC (1979) The Spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. In: Proc R Soc Lond Ser B 205(1161):581–598

  • Gust D, Kramer D et al (2008) Engineered and artificial photosynthesis: human ingenuity enters the game. MRS Bull 33:383–387

    CAS  Google Scholar 

  • Hartl DL, Moriyama EN et al (1994) Selection intensity for codon bias. Genetics 138(1):227–234

    PubMed  CAS  Google Scholar 

  • Jacob F (1977) Evolution and tinkering. Science 196(4295):1161–1166

    Article  PubMed  CAS  Google Scholar 

  • Jennings RC, Belgio E et al (2007) Entropy consumption in primary photosynthesis. Biochim Biophys Acta 1767(10):1194–1197 discussion 1198–1199

    Article  PubMed  CAS  Google Scholar 

  • Kiang NY, Segura A et al (2007a) Spectral signatures of photosynthesis. II. Coevolution with other stars and the atmosphere on extrasolar worlds. Astrobiology 7(1):252–274

    Article  PubMed  CAS  Google Scholar 

  • Kiang NY, Siefert J et al (2007b) Spectral signatures of photosynthesis. I. Review of earth organisms. Astrobiology 7(1):222–251

    Article  PubMed  CAS  Google Scholar 

  • Kirschner MW, Gerhart JC (2005) The plausability of life. Yale University Press, New Haven

    Google Scholar 

  • Knox RS (1969) Thermodynamics and the primary processes of photosynthesis. Biophys J 9(11):1351–1362

    Article  PubMed  CAS  Google Scholar 

  • Knox RS (1978) Conversion of light into free energy. Light induced charge separation at interfaces in biological and chemical systems. Dahlem Workshop, Berlin, Verlag Chemie

  • Knox RS, Parson WW (2007) Entropy production and the Second Law in photosynthesis. Biochim Biophys Acta 1767(10):1189–1193

    Article  PubMed  CAS  Google Scholar 

  • Lavergne J, Joliot P (1996) Dissipation in bioenergetic electron transfer chains. Potosynth Res 48:127–138

    Article  CAS  Google Scholar 

  • Lavergne J, Joliot P (2000) Thermodynamics of the excited states of photosynthesis. Energy transduction in membranes. W. A. Cramer, Biophysical Society

  • Lewis NS (2007) Toward cost-effective solar energy use. Science 315(5813):798–801

    Article  PubMed  CAS  Google Scholar 

  • Long SP, Zhu XG et al (2006) Can improvement in photosynthesis increase crop yields? Plant Cell Environ 29:315–330

    Article  PubMed  CAS  Google Scholar 

  • Mauzerall D (1976) Chlorophyll and photosynthesis. Philos Trans R Soc B 273(924):287–294

    Article  CAS  Google Scholar 

  • Mauzerall D (1992) Light, iron, Sam Granick and the origin of life. Photosynth Res 33:163–170

    Article  CAS  Google Scholar 

  • Miller SR, Augustine S et al (2005) Discovery of a free-living chlorophyll d-producing cyanobacterium with a hybrid proteobacterial/cyanobacterial small-subunit rRNA gene. Proc Natl Acad Sci USA 102(3):850–855

    Article  PubMed  CAS  Google Scholar 

  • Miyashita H, Adachi K et al (1997) Pigment composition of a novel oxygenic photosynthetic prokaryote containing chlorophyll d as the major chlorophyll. Plant Cell Physiol 38(3):274–281

    CAS  Google Scholar 

  • Nobel PS (2005) Physicochemical and environmental plant physiology. Elsevier, Amsterdam

    Google Scholar 

  • Olson JM, Blankenship RE (2004) Thinking about the evolution of photosynthesis. Photosynth Res 80:373–386

    Article  PubMed  CAS  Google Scholar 

  • Page CC, Moser CC et al (1999) Natural engineering principles of electron tunnelling in biological oxidation-reduction. Nature 402(6757):47–52

    Article  PubMed  CAS  Google Scholar 

  • Parker GA, Maynard-Smith J (1990) Optimality theory in evolutionary biology. Nature 348:27–33

    Article  Google Scholar 

  • Parson WW (1978) Thermodynamics of the primary reactions of photosynthesis. Photochem Photobiol 28:389–393

    Article  CAS  Google Scholar 

  • Ross RT, Calvin M (1967) Thermodynamics of light emission and free-energy storage in photosynthesis. Biophys J 7(5):595–614

    Article  PubMed  CAS  Google Scholar 

  • Seelert H, Poetsch A et al (2000) Structural biology. Proton-powered turbine of a plant motor. Nature 405(6785):418–419

    Article  PubMed  CAS  Google Scholar 

  • Sener MK, Lu D et al (2002) Robustness and optimality of light harvesting in cyanobacterial Photosystem I. J Phys Chem B 106:7948–7960

    Article  CAS  Google Scholar 

  • Shockley W, Queisser H (1961) Detailed balance limit of p-n junction solar cells. J Appl Phys 32(3):510–519

    Article  CAS  Google Scholar 

  • Smith H (1982) Light quality, photoperception, and plant strategy. Annu Rev Plant Biol 33:481–518

    CAS  Google Scholar 

  • Soffer BH, Lynch DK (1999) Some paradoxes, errors, and resolutions concerning the spectral optimization of human vision. Am J Phys 67(11):946–953

    Article  Google Scholar 

  • Stearns SC (1992) The evolution of life histories. Oxford university press, New York

    Google Scholar 

  • Tilman D (1982) Resource competition and community structure. Princeton University Press, Princeton

    Google Scholar 

  • Vasil’ev S, Bruce D (2004) Optimization and evolution of light harvesting in photosynthesis: the role of antenna chlorophyll conserved between Photosystem II and Photosystem I. Plant Cell 16(11):3059–3068

    Article  PubMed  CAS  Google Scholar 

  • Wagner A (2005) Energy constraints on the evolution of gene expression. Mol Biol Evol 22(6):1365–1374

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Lin S et al (2007) Protein dynamics control the kinetics of initial electron transfer in photosynthesis. Science 316(5825):747–750

    Article  PubMed  CAS  Google Scholar 

  • Warren SG (1984) Optical constants of ice from the ultraviolet to the microwave. Appl Opt 23:1026–1225

    Article  Google Scholar 

  • Zolotarev VM, Mikhilov BA et al (1969) Dispersion and absorption of liquid water in the infrared and radio regions of the spectrum. Opt Spectrosc 27:430–432

    Google Scholar 

Download references

Acknowledgments

The author thanks Eran Bouchbinder for generous help with the thermodynamic analysis and Michael Brenner, William Parson, Robert Knox, John Bolton, Govindjee, Mary Archer, Marc Kirschner, Mike Springer, Sallie Chisholm, Bernhard Loll, Jacques Dumais, Deepak Barua, and Rafael Rubio de Casas for helpful discussions of the analysis and manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ron Milo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPT 433 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Milo, R. What governs the reaction center excitation wavelength of photosystems I and II?. Photosynth Res 101, 59–67 (2009). https://doi.org/10.1007/s11120-009-9465-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-009-9465-8

Keywords

Navigation