Skip to main content
Log in

Evolution of the Z-scheme of photosynthesis: a perspective

  • History and Biography
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

The concept of the Z-scheme of oxygenic photosynthesis is in all the textbooks. However, its evolution is not. We focus here mainly on some of the history of its biophysical aspects. We have arbitrarily divided here the 1941–2016 period into three sub-periods: (a) Origin of the concept of two light reactions: first hinted at, in 1941, by James Franck and Karl Herzfeld; described and explained, in 1945, by Eugene Rabinowitch; and a clear hypothesis, given in 1956 by Rabinowitch, of the then available cytochrome experiments: one light oxidizing it and another reducing it; (b) Experimental discovery of the two light reactions and two pigment systems and the Z-scheme of photosynthesis: Robert Emerson’s discovery, in 1957, of enhancement in photosynthesis when two light beams (one in the far-red region, and the other of shorter wavelengths) are given together than when given separately; and the 1960 scheme of Robin Hill & Fay Bendall; and (c) Evolution of the many versions of the Z-Scheme: Louis Duysens and Jan Amesz’s 1961 experiments on oxidation and reduction of cytochrome f by two different wavelengths of light, followed by the work of many others for more than 50 years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

(modified from Fig. 2 in Demeter and Govindjee 1989)

Fig. 7

Similar content being viewed by others

References

  • Abbott IA, Smith CM (2010) Lawrence Rogers Blinks (1900–1989). Biographical Memoirs of the National Academy of Sciences, USA, pp. 3–19

    Google Scholar 

  • Abrahams JP, Leslie AG, Lutter R, Walker JE (1994) Structure at 2.8 Å resolution of F1-ATPase from bovine heart mitochondria. Nature 370:621–628

    Article  CAS  PubMed  Google Scholar 

  • Ago H, Adachi H, Umena Y, Tashiro T, Kawakami K, Kamiya N, Tian L, Han G, Kuang T, Liu Z, Wang F, Zou H, Enami I, Miyano M, Shen JR (2016) Novel features of eukaryotic photosystem II revealed by its crystal structure analysis from a red alga. J Biol Chem 291:5676–5687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allakhverdiev S, Yruela I, Picorel R, Klimov V (1997) Bicarbonate is an essential constituent of the water-oxidizing complex of photosystem II. Proc Natl Acad Sci USA 94: 5050–5054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allakhverdiev SI, Tomo T, Shimada Y, Kindo H, Nagao R, Klimov VV, Mimuro M (2010) Redox potential of pheophytin a in photosystem II of two cyanobacteria having the different special pair chlorophylls. Proc Natl Acad Sci USA 107:3924–3929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amunts A, Drory O, Nelson N (2007) The structure of a plant photosystem I supercomplex at 3.4 Å resolution. Nature 447:56–63

    Article  CAS  Google Scholar 

  • Ananyev G, Nguyen T, Putnam-Evans C, Dismukes GC GC (2005) Mutagenesis of CP43-arginine-357 to serine reveals new evidence for (bi)carbonate functioning in the water oxidizing complex of photosystem II. Photochem Photobiol Sci 4:991–998

    Article  CAS  PubMed  Google Scholar 

  • Bannister TT (1972) The careers and contributions of Eugene Rabinowitch. Biophys J 12:707–718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baranov SV, Tyryshkin AM, Katz D, Dismukes GC, Ananyev GM, Klimov VV (2004) Bicarbonate is a native cofactor for assembly of the manganese cluster of the photosynthetic water oxidizing complex. Kinetics of reconstitution of O2 evolution by photoactivation. Biochemistry 43:2070–2079

    Article  CAS  PubMed  Google Scholar 

  • Barber J (2016) Mn4Ca cluster of photosynthetic oxygen-evolving center: structure, function and evolution. Biochemistry 55:5901–5906. doi:10.1021/acs.biochem.6b00794

    Article  CAS  Google Scholar 

  • Bassham JA (2003) Mapping the carbon reduction cycle: a personal retrospective. Photosynth Res 76:35–52

    Article  PubMed  Google Scholar 

  • Bay Z, Pearlstein RM (1963) A theory of energy transfer in the photosynthetic unit. Proc Natl Acad Sci USA 50:1071–1078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bendall DS (1994) Robert Hill (1899–1991). Biogr Memoirs Fellows R Soc 40:142–170

    Article  Google Scholar 

  • Benson AA (2002) Following the path of carbon in photosynthesis: a personal story. Photosynth Res 73:29–49

    Article  CAS  PubMed  Google Scholar 

  • Björn LO, Papageorgiou GC, Blankenship R, Govindjee (2009) A viewpoint: why chlorophyll a? Photosynth Res 99:85–98

    Article  PubMed  CAS  Google Scholar 

  • Björn LO, Shevela D, Govindjee (forthcoming) Photosynthesis. World Scientific Publishing Co, Singapore

    Google Scholar 

  • Blankenship RE (2014) Molecular mechanisms of photosynthesis. Blackwell/Wiley, Malden

  • Blankenship RE, Prince RC (1985) Excited state redox potentials and the Z scheme of photosynthesis. Trends Biochem Sci 10:382–383

    Article  CAS  Google Scholar 

  • Blinks LR (1957) Chromatic transient in photosynthesis of red algae. In: Gaffron H, Brown AH, French CS, Livingston R, Rabinowitch EI, Strehler B, Tolbert NE (eds) Research in photosynthesis. Interscience Publishers, New York, pp 444–449

    Google Scholar 

  • Blinks LR (1959) Chromatic transients in the photosynthesis of a green alga. Plant Physiol 34:200–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyer PD (1997) The ATP synthase: a splendid molecular machine. Annu Rev Biochem 66:717–749

    Article  CAS  PubMed  Google Scholar 

  • Brinkert K, De Causmaecker S, Krieger-Liszkay A, Fantuzzi A, Rutherford AW (2016) Bicarbonate-induced redox tuning in Photosystem II for regulation and protection. Proc Natl Acad Sci USA 113:12144–12149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cederstrand C, Rabinowitch E, Govindjee (1966) Analysis of the red absorption band of chlorophyll a in vivo. Biochim Biophys Acta 126:1–12

    Article  CAS  PubMed  Google Scholar 

  • Clausen J, Beckman K, Junge W, Messinger J (2005) Evidence that bicarbonate is not the substrate in photosynthetic oxygen evolution. Plant Physiol 139:1444–1450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cox N, Retegan M, Neese F, Pantazis DA, Boussac A, Lubitz W (2014) Electronic structure of the oxygen-evolving complex in photosystem II prior to O–O bond formation. Science 345:804–808

    Article  CAS  PubMed  Google Scholar 

  • Cramer WA, Kallas T (eds) (2016) Cytochrome complexes: evolution, structures, energy transduction, and signaling. Advances in photosynthesis and respiration, vol 41. Springer, Dordrecht

    Google Scholar 

  • Crofts AR (2004) The Q-cycle: a personal perspective. Photosynth Res 80:223–243

    Article  CAS  PubMed  Google Scholar 

  • Crofts AR, Robinson HH, Andrews K, Van Doren S, Berry E (1987) Catalytic sites for reduction and oxidation of quinones. In: Papa S, Chance B, Ernster L (eds) Cytochrome systems: molecular biology and bioenergetics. Plenum Press, NY, pp 617–624

    Chapter  Google Scholar 

  • Dasgupta J, Ananyev GM, Dismukes GC (2008) Photoassembly of the water-oxidizing complex in photosystem II. Coord Chem Rev 252:347–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Demeter S, Govindjee (1989) Thermoluminescence in plants. Physiologia Plant 75:121–130

    Article  CAS  Google Scholar 

  • Demmig-Adams B, Garab G, Adams WW III, Govindjee (eds) (2014) Non-photochemical quenching and energy dissipation in plants, algae and cyanobacteria. Advances in photosynthesis and respiration, vol 40. Springer, Dordrecht

    Google Scholar 

  • Döring G, Bailey JL, Kreutz W, Witt HT (1968) The active chlorophyll-a-II in light reaction II of photosynthesis. Naturwissenschaften 55:220–221

    Article  PubMed  Google Scholar 

  • Dumas L, Chazaux M, Peltier G, Johnson X, Alric J (2016) Cytochrome b 6 f function and localization, phosphorylation state of thylakoid membrane proteins and consequences on cyclic electron flow. Photosynth Res 129:307–320

    Article  CAS  PubMed  Google Scholar 

  • Duysens LNM (1952) Transfer of excitation energy in photosynthesis. Doctoral Thesis. State University, Utrecht

    Google Scholar 

  • Duysens LNM (1954) Role of cytochrome and pyridine nucleotide in algal photosynthesis. Science 121:210–211

    Article  Google Scholar 

  • Duysens LNM (1989) The discovery of the two photosynthetic systems: a personal account. Photosynth Res 21:61–80

    Article  CAS  Google Scholar 

  • Duysens LNM, Amesz J (1962) Function and identification of two photochemical systems in photosynthesis. Biochim Biophys Acta 64:243–260

    Article  CAS  Google Scholar 

  • Duysens LNM, Sweers HE (1963) Mechanism of two photochemical reactions in algae as studied by means of fluorescence. In: Japanese Society of Plant Physiologists (eds), Studies on microalgae and photosynthetic Bacteria. University of Tokyo Press: Tokyo, pp 353–372

    Google Scholar 

  • Duysens LNM, Amesz J, Kamp BM (1961) Two photochemical systems in photosynthesis. Nature 190:510–511

    Article  CAS  PubMed  Google Scholar 

  • Eaton-Rye JJ, Govindjee (1988) Electron transfer through the quinone acceptor complex of Photosystem II after one or two actinic flashes in bicarbonate-depleted spinach thylakoid membranes. Biochim Biophys Acta 935:248–257

    Article  CAS  Google Scholar 

  • Eaton-Rye JJ, Tripathy BC, Sharkey TD (eds) (2012) Photosynthesis: plastid biology, energy conversion and carbon assimilation. Advances in photosynthesis and respiration, vol 34. Springer, Dordrecht

    Google Scholar 

  • Emerson R, Chalmers RV (1958) Speculations concerning the function and phylogenetic significance of the accessory pigments of algae. Phycol Soc News Bull 11:51–56

    Google Scholar 

  • Emerson R, Lewis CM (1943) The dependence of the quantum yield of Chlorella photosynthesis on wavelength of light. Am J Bot 30:165–178

    Article  CAS  Google Scholar 

  • Emerson R, Rabinowitch E (1960) Red drop and role of auxiliary pigments in photosynthesis. Plant Physiol 35:477–485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emerson R, Chalmers RV, Cederstrand CN (1957) Some factors influencing the long wave limit of photosynthesis. Proc Natl Acad Sci USA 43:133–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finazzi G, Johnson GN (2016) Cyclic electron flow: facts and hypotheses. Photosynth Res 129:227–230

    Article  CAS  PubMed  Google Scholar 

  • Franck J (1958) Remarks on the long-wavelength limits of photosynthesis and chlorophyll fluorescence. Proc Natl Acad Sci USA 44:941–948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franck J, Herzfeld KF (1941) Contribution to a theory of photosynthesis. J Phys Chem 45:978–1025

    Article  CAS  Google Scholar 

  • Franck J, Rosenberg JL (1964) A theory of light utilization in plant photosynthesis. J Theor Biol 7:276–301

    Article  CAS  PubMed  Google Scholar 

  • Franck J, Teller E (1938) Migration and photochemical action of excitation energy in crystals. J Chem Phys 6:861–872

    Article  CAS  Google Scholar 

  • French CS (1979) Fifty years of photosynthesis. Annu Rev Plant Physiol 30:1–36

    Article  CAS  Google Scholar 

  • Golbeck JH (ed) (2006) Photosystem I: the light-driven plastocyanin: ferredoxin oxidoreductase. Advances in photosynthesis and respiration, vol 24. Springer, Dordrecht

    Google Scholar 

  • Govindjee (2004) Robert Emerson, Eugene Rabinowitch: understanding photosynthesis. In: Lillian Hoddeson (ed). “No boundaries: University of Illinois Vignettes”, Chap. 12, pp. 181–194. University of Illinois Press, Urbana and Chicago

    Google Scholar 

  • Govindjee, Björn LO (2015) Dissecting oxygenic photosynthesis: the evolution of the “Z”-scheme for Thylakoid reactions. In: Itoh S, Mohanty S, Guruprasad KN (eds) Photosynthesis: basics to applications. I. K. International Publishing House Pvt. Ltd., New Delhi, pp 1–27

    Google Scholar 

  • Govindjee, Fork DC (2006) Charles Stacy French (1907–1995). biographical memoirs, vol 88. National Academy of Sciences, Washington, pp 2–29

    Google Scholar 

  • Govindjee, Govindjee R (1975) Introduction to photosynthesis. In: Govindjee (ed) Bioenergetics of photosynthesis. Academic Press, New York, pp 2–50

    Google Scholar 

  • Govindjee, Pulles MPJ (2016) Louis Nico Marie Duysens (March 15, 1921–September 8, 2015): A leading biophysicist of the 20th century. Photosynth Res 128:223–234

    Article  CAS  PubMed  Google Scholar 

  • Govindjee, Rabinowitch E (1960) Two forms of chlorophyll a in vivo with distinct photochemical functions. Science 132:159–160

    Google Scholar 

  • Govindjee, van Rensen JJS (1978) Bicarbonate effects on the electron flow in isolated broken chloroplasts. Biochim Biophys Acta 505:183–213

    Article  CAS  PubMed  Google Scholar 

  • Govindjee, Ichimura S, Cederstrand C, Rabinowitch E (1960) Effect of combining far-red light with shorter wave light in the excitation of fluorescence in Chlorella. Arch Biochem Biophys 89:322–323

  • Govindjee R, Thomas JB, Rabinowitch E (1960) “Second Emerson effect” in the Hill reaction of Chlorella cells with quinone as oxidant. Science 132:421

  • Govindjee, Owens OvH, Hoch G (1963) A mass spectroscopic study of the Emerson enhancement effect. Biochim Biophys Acta 75:281–284

    Article  CAS  PubMed  Google Scholar 

  • Govindjee R, Govindjee, Hoch G (1964) Emerson enhancement effect in chloroplast reactions. Plant Physiol 39:10–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Govindjee R, Rabinowitch E, Govindjee (1968) Maximum quantum yield and action spectrum of photosynthesis and fluorescence in Chlorella. Biochim Biophys Acta 162:539–544

    Article  CAS  PubMed  Google Scholar 

  • Govindjee, Döring G, Govindjee R (1970) The active chlorophyll a II in suspensions of lyophilized and tris-washed chloroplasts. Biochim Biophys Acta 205:303–306

    Article  CAS  PubMed  Google Scholar 

  • Govindjee, Beatty JT, Gest H, Allen JF (eds) (2005) Discoveries in photosynthesis. Advances in photosynthesis and respiration, vol 20. Springer, Dordrecht

    Google Scholar 

  • Govindjee, Björn LO, Nickelsen K (2012) Evolution of the Z-scheme of electron transport in oxygenic photosynthesis. C Lu (ed) Photosynthesis: research for food, fuel and future—15th International Conference on Photosynthesis, Symposium: Education Session, University Press, Springer-Verlag GmbH, Zhejiang, pp 835–841

    Google Scholar 

  • Hill R (1965) Biochemists’ green mansions: the photosynthetic electron transport chain in plants. Essays Biochem 1:121–151

    CAS  PubMed  Google Scholar 

  • Hill R, Bendall F (1960) Function of the two cytochrome components of chloroplast: a working hypothesis. Nature 186:136–137

    Article  CAS  Google Scholar 

  • Hill JF, Govindjee (2014) The controversy over the minimum quantum requirement for oxygen evolution. Photosynth Res 122:97–112

    Article  CAS  PubMed  Google Scholar 

  • Hillier W, MnConnell I, Badger MR, Boussac A, Klimov VV, Dismukes GC, Wydrzynski T (2006) Quantitative assessment of intrinsic carbonic anhydrase activity and the capacity for bicarbonate oxidation in photosystem II. Biochemistry 45:2094–2102

    Article  CAS  PubMed  Google Scholar 

  • Jagendorf AT (2002) Photophosphorylation and the chemiosmotic perspective. Photosynth Res 73:233–241

    Article  CAS  PubMed  Google Scholar 

  • Jaiswal S, Bansal M, Roy S, Bharari A, Padhi B (2016) Electron flow from water to NADP+ with students acting as molecules in the chain: a Z-scheme drama in the classroom. Photosynth Res. doi:10.1007/s11120-016-0317-z

    PubMed  Google Scholar 

  • Joliot P, Kok B (1975) Oxygen evolution in photosynthesis. In: Govindjee (ed) Bioenergetics of photosynthesis. Academic Press, NY, pp 388–413

    Google Scholar 

  • Junge W (2004) Protons, proteins and ATP. Photosynth Res 80:197–221

    Article  CAS  PubMed  Google Scholar 

  • Ke B (2001) Photosynthesis: photobiochemistry and photobiophysics, advances in photosynthesis and respiration. vol. 10, Springer, Dordrecht

    Google Scholar 

  • Klimov VV (2003) Discovery of pheophytin function in the photosynthetic energy conversion as the primary electron acceptor of Photosystem II. Photosynth Res 76:247–253

    Article  CAS  PubMed  Google Scholar 

  • Klimov VV, Klevanik AV, Shuvalov VA, Krasnovsky AA (1977) Reduction of pheophytin in the primary light reaction of photosystem 2. FEBS Lett 82:183–186

    Article  CAS  PubMed  Google Scholar 

  • Klimov V, Baranov S, Allakhverdiev S (1997) Bicarbonate protects the donor side of photosystem II against photoinhibition and thermoinactivation. FEBS Lett 418:243–246

    Article  CAS  PubMed  Google Scholar 

  • Klimov VV, Allakhverdiev SI, Nishiyama Y, Khorobrykh AA, Murata N (2003) Stabilization of the oxygen-evolving complex of photosystem II by bicarbonate and glycinebetaine in thylakoid and subthylakoid preparations. Funct Plant Biol 30:797–803

    Article  CAS  Google Scholar 

  • Kok B (1956) On the reversible absorption change at 705 mμ in photosynthetic organisms. Biochim Biophys Acta 22:399–401

    Article  CAS  PubMed  Google Scholar 

  • Kok B (1957) Absorption changes induced by the photochemical reaction of photosynthesis. Nature 179:583–584

    Article  CAS  Google Scholar 

  • Kok B (1959) Light-induced absorption changes in photosynthetic organisms. II. A split-beam difference spectrophotometer. Plant Physiol 34:184–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koroidov S, Shevela D, Shutova T, Samuelsson G, Messinger J (2014) Mobile hydrogen carbonate acts as proton acceptor in photosynthetic water oxidation. Proc Natl Acad Sci USA 111:6299–6304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krasnovsky AA (1992) Excited chlorophyll and related problems. Photosynth Res 33:177–192

    Article  CAS  PubMed  Google Scholar 

  • Krey A, Govindjee (1964) Fluorescence changes in Porphyridium exposed to green light of different intensity: a new emission band at 693 nm and its significance to photosynthesis. Proc Natl Acad Sci USA 52:1568–1572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurisu G, Zhang H, Smith JL, Cramer WA (2003) Structure of the cytochrome b 6 f complex of oxygenic photosynthesis: tuning the cavity. Science 302:1009–1014

    Article  CAS  PubMed  Google Scholar 

  • Larkum AWD (2003) Contributions of Henrik Lundegårdh. Photosynth Res 76:105–110

    Article  CAS  PubMed  Google Scholar 

  • Lundegårdh H (1954) On the oxidation of cytochrome f by light. Physiol Plant 7:375–382

    Article  CAS  Google Scholar 

  • Mamedov M, Govindjee, Nadtochenko V, Semenov A (2015) Primary electron transfer processes in photosynthetic reaction centers from oxygenic organisms. Photosynth Res 125:51–63

    Article  CAS  PubMed  Google Scholar 

  • Mazor Y, Borovikova A, Nelson N (2015) The structure of plant photosystem I supercomplex at 2.8 Å resolution. eLife 4:e07433–e07433

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McElroy WD, Glass B (eds) (1961) A symposium on light and life. The Johns Hopkins Press, Baltimore

    Google Scholar 

  • Milanovsky GE, Ptushenko VV, Cherpanov DA, Semenov AY (2014) Mechanism of primary and secondary ion-radical pair formation in photosystem I complexes. Biochemistry 79:221–226

    CAS  PubMed  Google Scholar 

  • Mitchell P (1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemiosmotic type of mechanism. Nature 191:144–148

    Article  CAS  PubMed  Google Scholar 

  • Mohapatra PK, Singh NR (2015) Teaching the Z-scheme of electron transport in photosynthesis: a perspective. Photosynth Res 123:105–114

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee S, Stull JA, Yano J, Stamatatos T, Pringouri K, Stich TA, Abboud KA, Britt RD, Yachandra VK, Christou G (2012) Synthetic model of the asymmetric [Mn3CaO4] cubane core of the oxygen-evolving complex of Photosystem II. Proc Natl Acad Sci USA 109:2257–2262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Myers J (1987) Bessel Kok (1918–1979) biographical memoirs of the Natl Acad Sci 57:125–148

    Google Scholar 

  • Nadtochenko VA, Shelaev IV, Mamedov MD, Shkuropatov AY, Semenov AY, Shuvalov VA (2014) Primary radical ion pairs in photosystem II core complexes. Biochemistry 79(3):197–204

    CAS  PubMed  Google Scholar 

  • Najafpour MM, Moghaddam AN, Allakhverdiev SI, Govindjee (2012) Biological water oxidation: lessons from Nature. Biochim Biophys Acta 1817:1110–1121

    Article  CAS  PubMed  Google Scholar 

  • Najafpour MM, Moghaddam AN, Shen J-R, Govindjee (2013) Water oxidation and water-oxidizing complex in cyanobacteria. In: Srivastava AK, Rai AN, Neilan BA (eds) Stress biology of cyanobacteria. CRC Publishers, Cleveland, pp. 41–60

  • Nelson N, Junge W (2015) Structure and energy transfer in photosystems of oxygenic photosynthesis. Annu Rev Biochem 84:659–683

    Article  CAS  PubMed  Google Scholar 

  • Nickelsen K (2015) Explaining photosynthesis: models of biochemical mechanisms, 1840–1960. Springer, Dordrecht

    Book  Google Scholar 

  • Nickelsen K, Govindjee (2011) The maximum quantum yield controversy. Otto Warburg and the midwest gang. Bern Studies in the History and Philosophy of Science, Bern 2011. ISBN: 978-3-9523421-9-0, paperback, p 138

  • Ort D, Yocum C (eds) (1996) Oxygenic photosynthesis: the light reactions advances in photosynthesis and respiration, vol 4. Springer, Dordrecht

    Google Scholar 

  • Papageorgiou G, Govindjee (eds) (2004) Chlorophyll a fluorescence: a signature of photosynthesis. Advances in photosynthesis and respiration, vol 19. Springer, Dordrecht, p 820

    Google Scholar 

  • Parson WW (1983) Photosynthesis. In: Zubay G (ed) Biochemistry. Addison-Wesley Publishing Company, Boston

    Google Scholar 

  • Parson WW, Monger TG (1976) Interrelationships among excited states in bacterial reaction centers. Brookhaven Symp Biol 28:195–211

    Google Scholar 

  • Prince RG, Leigh JS Jr, Dutton PL (1976) Thermodynamic properties of the reaction center of Rhodopseudomonas viridis. In vivo measurement of the reaction center bacteriochlorophyll-primary acceptor intermediary electron carrier. Biochim Biophys Acta 440:622–636

    Article  CAS  PubMed  Google Scholar 

  • Qin X, Suga M, Kuang T, Shen JR (2015) Photosynthesis. Structural basis for energy transfer pathways in the plant PSI-LHCI supercomplex. Science 348:989–995

    Article  CAS  PubMed  Google Scholar 

  • Rabinowitch EI (1945) Photosynthesis, vol I. Interscience Publishers, New York

    Google Scholar 

  • Rabinowitch EI (1956) Photosynthesis and related processes, vol II, Part 2. Interscience Publishers, New York

    Google Scholar 

  • Rabinowitch E (1961) Robert Emerson (1903–1959). Biogr Mem Natl Acad Sci USA 25:112–131

    Google Scholar 

  • Rabinowitch E, Govindjee (1965) The role of chlorophyll in photosynthesis. Sci Am 213:74–83

    Article  CAS  PubMed  Google Scholar 

  • Rabinowitch E, Govindjee (1969) Photosynthesis. John Wiley & Sons; copyright by Govindjee. Available free at http://www.life.illinois.edu/govindjee/g/Books.html

  • Rice SA, Jortner J (2010) James Franck-(1882–1964) Biographical Memoirs of the National Academy of Sciences. Washington, DC, pp. 1–28

  • Robinson GW (1967) Excitation transfer and trapping in photosynthesis. Brookhaven Symp Biol 19:16–48

    Google Scholar 

  • Rosenberg JL (2004) The contributions of James Franck to photosynthesis research: a tribute. Photosynth Res 80:71–76

    Article  CAS  PubMed  Google Scholar 

  • Shen J-R (2015) The structure of photosystem II and the mechanism of water oxidation in photosynthesis. Annu Rev Plant Biol 66:23–48

    Article  CAS  PubMed  Google Scholar 

  • Shevela D, Eaton-Rye JJ, Shen J-R, Govindjee (2012) Photosystem II and unique role of bicarbonate: a historical perspective. Biochim Biophys Acta 1817:1134–1151

    Article  CAS  PubMed  Google Scholar 

  • Shevela D, Nöring B, Koroidov S, Shutova T, Samuelsson G, Messinger J (2013) Efficiency of photosynthetic water oxidation at ambient and depleted levels of inorganic carbon. Photosynth Res 117:401–412

    Article  CAS  PubMed  Google Scholar 

  • Shikanai T (2016) Regulatory network of proton motive force: contribution of cyclic electron transport around photosystem I. Photosynth Res 129:253–260

    Article  CAS  PubMed  Google Scholar 

  • Shutova T, Kenneweg H, Buchta J, Nikitina J, Terentyev V, Chernyshov S, Andersson B, Allakhverdiev SI, Klimov VV, Dau H, Junge W, Samuelsson G (2008) The photosystem II-associated Cah3 in Chlamydomonas enhances the O2 evolution rate by proton removal. EMBO J 27:782–791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stemler A, Babcock GT, Govindjee (1974) The effect of bicarbonate on photosynthetic oxygen evolution in flashing light in chloroplast fragments. Proc Natl Acad Sci USA 71:4679–4683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suga M, Akita F, Hirara K, Ueno G, Murakami H, Nakajima Y, Shimizu T, Yamashita K, Ago H, Shen J-R (2015) Native structure of photosystem II at 1.95 Å resolution viewed by femtosecond X-ray pulses. Nature 517:99–103

    Article  CAS  PubMed  Google Scholar 

  • Tsygankov AA, Allakhverdiev SI, Tomo T, Govindjee (2016) International conference on “Photosynthesis Research for Sustainability-2016”: In honor of Nathan Nelson and Turhan Nejat Veziroglu. Photosynth Res. doi:10.1007/s11120-016-0311-5

    Google Scholar 

  • Umena Y, Kawakami K, Shen J-R, Kamiya N (2011) Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473:55–60

    Article  CAS  PubMed  Google Scholar 

  • Vinyard DJ, Ananyev GM, Dismukes GC (2013) Photosystem II: the reaction center of oxygenic photosynthesis. Annu Rev Biochem 82:577–606

    Article  CAS  PubMed  Google Scholar 

  • Walker DA (1992a) Excited leaves. Tansley Review No. 36. New Phytol 121:325–345

  • Walker DA (1992b) Energy, plants and man, oxygraphics. Brighton, East Sussex

  • Walker DA (2002a) And whose bright presence—an appreciation of Robert Hill and his reaction. Photosynth Res 73(1):51–54

  • Walker DA (2002b) The Z-scheme: down hill all the way. TIPS 7:183–185

  • Wasielewski MR, Fenton JM, Govindjee (1987) The rate of formation of P700+-Ao in Photosystem I particles from spinach as measured by picosecond transient absorption spectroscopy. Photosynth Res 12:181–190

    Article  CAS  PubMed  Google Scholar 

  • Wasielewski MR, Johnson DG, Seibert M, Govindjee (1989) Determination of the primary charge separation rate in isolated Photosystem II reaction centers with 500 femtosecond time resolution. Proc Natl Acad Sci USA 86:524–528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei X, Su X, Cao P, Liu X, Chang W, Li M, Zhang X, Liu Z (2016) Structure of spinach photosystem II–LHCII supercomplex at 3.2 Å resolution. Nature 534:69–74

    Article  CAS  PubMed  Google Scholar 

  • Witt HT (1971) Coupling of quanta, electrons, fields, ions and phosphorylation in the functional membrane of photosynthesis. Results by pulse spectroscopic methods. Quart Rev Biophys 4:365–477

    Article  CAS  Google Scholar 

  • Witt HT (2004) Steps on the way to building blocks, topologies, crystals and X-ray structural analysis of Photosystem I and II of water oxidizing photosynthesis. Photosynth Res 80:86–107

    Google Scholar 

  • Wydrzynski T, Govindjee (1975) A new site of bicarbonate effect in photosystem II of photosynthesis: evidence from chlorophyll fluorescence transients in spinach chloroplasts. Biochim Biophys Acta 387:403–408

    Article  CAS  PubMed  Google Scholar 

  • Wydrzynski T, Satoh K (eds) (2005) Photosystem II: the light-driven water:plastoquinone oxidoreductase. Advances in photosynthesis and respiration, vol 22. Springer, Dordrecht

    Google Scholar 

  • Xiong J, Subramaniam S, Govindjee (1996) Modeling of the D1/D2 proteins and cofactors of the Photosystem II reaction center: implications to herbicide and bicarbonate binding. Protein Sci 5:2054–2073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong J, Subramaniam S, Govindjee (1998) A knowledge-based three dimensional model of the Photosystem II reaction center of Chlamydomonas reinhardtii. Photosynth Res 56:229–254

    Article  CAS  Google Scholar 

  • Young ID, Ibrahim M, Chatterjee R, Gul S, Fuller F, Koroidov S, Brewster AS, Tran R, Alonso-Mori R, Kroll T, Michels-Clark T, Laksmono H, Sierra RG, Stan CA, Hussein R, Zhang M, Douthit L, Kubin M, de Lichtenberg C, Vo Pham L, Nilsson H, Cheah MH, Shevela D, Saracini C, Bean MA et al. (2016) Structure of photosystem II and substrate binding at room temperature. Nature 540:453–457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang C, Chen C, Dong H, Shen J-R, Dau H, Zhao J (2015) A synthetic Mn4Ca-cluster mimicking the oxygen-evolving center of photosynthesis. Science 348:690–693

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are highly indebted to Robert Blankenship, Wim Vermaas, John Raven, and four reviewers of this manuscript, who helped us improve the presentation of this historical educational paper. We thank P. Lester Dutton for looking at our Fig. 6 and for bringing to our attention reviews on the primary photochemistry of photosynthesis. Govindjee thanks Rajni Govindjee for her support during the preparation of this paper; he is grateful to the excellent staff of the offices of Information Technology (Life Sciences), Plant Biology, Biochemistry, and Biophysics & Quantitative Biology of the University of Illinois at Urbana-Champaign for their cooperation and help in all what he does. The proofs were corrected on January 14, 2017, when Govindjee was visiting the laboratories of Ashwani Pareek and Baishnab Tripathy at Jawaharlal Nehru University, New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Govindjee.

Additional information

Submitted for publication in honor of Nathan Nelson, a world leader in the field of photosynthesis, and of T. Nejat Veziroglou, a world leader in the field of hydrogen evolution (see Tsygankov et al. 2016; also see pdfs at http://www.life.illinois.edu/govindjee/honorsfrom.html).

John Raven sent the following comment on this paper: “The history of the concept of the ‘Z scheme’ analysed in this manuscript by Govindjee and colleagues is timely and accurate. The sequence of publications cited, and the discussion of these publications, show how theoretical and experimental work led to our present concept of linear electron transport in oxygenic photosynthesis”.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1306 KB)

Appendix

Appendix

The following example shows that science is a self-correcting enterprise, no matter who the authors are, and that even the top scientists make mistakes. James Franck, together with Gustav Ludwig Hertz, received the 1925 Nobel Prize in Physics in 1926 for “for their discovery of the laws governing the impact of an electron upon an atom”. Later, he became known for the “Franck–Condon Principle”, which states that upon light absorption, a molecule goes into an excited state, but in a higher vibrational state. (See Rice and Jortner (2010) for all the major contributions, and life, of Franck.) Franck contributed extensively to photosynthesis (see Rosenberg 2004; also see Franck and Rosenberg 1964). Unfortunately, some of his thoughts, which may have been physically sound, turned out to be incorrect. Examples are: instead of using realistic 3-dimensional structure of the “antenna”, Franck and Teller (1938) calculated excitation energy transfer as if the pigments were located in one dimension; with these results, they challenged the concept of “photosynthetic unit”, but when two-dimensional and multidimensional approaches were used, their conclusions could not be accepted (see e.g., Bay and Pearlstein 1963; Robinson 1967). In the same manner, explanation by Franck (1958) of the “red drop” (Emerson and Lewis 1943) and the Emerson Enhancement Effect (Emerson et al. 1957), by double excitation (“up-conversion”) of the same chlorophyll a molecules was also incorrect.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Govindjee, Shevela, D. & Björn, L.O. Evolution of the Z-scheme of photosynthesis: a perspective. Photosynth Res 133, 5–15 (2017). https://doi.org/10.1007/s11120-016-0333-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-016-0333-z

Keywords

Navigation