Skip to main content
Log in

Two unique cyanobacteria lead to a traceable approach of the first appearance of oxygenic photosynthesis

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

The evolutionary route from anoxygenic photosynthetic bacteria to oxygenic cyanobacteria is discontinuous in terms of photochemical/photophysical reaction systems. It is difficult to describe this transition process simply because there are no recognized intermediary organisms between the two bacterial groups. Gloeobacter violaceus PCC 7421 might be a model organism that is suitable for analysis because it still possesses primordial characteristics such as the absence of thylakoid membranes. Whole genome analysis and biochemical and biophysical surveys of G. violaceus have favored the hypothesis that it is an intermediary organism. On the other hand, species differentiation is an evolutionary process that could be driven by changes in a small number of genes, and this process might give fair information more in details by monitoring of those genes. Comparative studies of genes, including those in Acaryochloris marina MBIC 11017, have provided information relevant to species differentiation; in particular, the acquisition of a new pigment, chlorophyll d, and changes in amino acid sequences have been informative. Here, based on experimental evidence from these two species, we discuss some of the evolutionary pathways for the appearance and differentiation of cyanobacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Chl:

Chlorophyll

MQ:

Menaquinone

PS:

Photosystem

RC:

Reaction center

References

  • Allen JF, Martin W (2007) Out of thin air. Nature 445:610–612

    Article  PubMed  CAS  Google Scholar 

  • Benjamin B, Finazzi G, Benson S, Barber J, Rappaport F, Telfer A (2007) Study of intersystem electron transfer in the chlorophyll d containing cyanobacterium Acaryochloris marina and a reappraisal of the redox properties of P740. Paper presented at the 14th international congress of photosynthesis, Scottish Exhibition and Conference Centre, Glasgow, 22–27 July 2007

  • Blankenship RE (2001) Molecular evidences for evolution of photosynthesis. Trends Plant Sci 6:4–6

    Article  PubMed  CAS  Google Scholar 

  • Diner BA, Rappaport F (2002) Structure, dynamics, and energetics of the primary photochemistry of photosystem II of oxygenic photosynthesis. Annu Rev Plant Biol 53:551–580

    Article  PubMed  CAS  Google Scholar 

  • Evstigneev VB, Cherkashina NA (1970) Isolation of chlorophyll d from the alga Grateloupia dichotoma. Biochemistry (Moscow) 35:39–42

    Google Scholar 

  • Frese RN, Germano M, de Weerd FL, van Stokkum IHM, Shkuropatov AY, Shuvalov VA, van Gorkom HJ, van Grondelle R, Dekker JP (2003) Electric field effects on the chlorophylls, pheophytins, and β-carotenes in the reaction center of photosystem II. Biochemistry 42:9205–9213

    Article  PubMed  CAS  Google Scholar 

  • Guglielmi G, Cohen-Bazire G, Bryant DA (1981) The structure of Gloeobacter violaceus and its phycobilisomes. Arch Microbiol 129:181–189

    Article  CAS  Google Scholar 

  • Holt AS, Morley HV (1959) A proposed structure for chlorophyll d. Can J Chem 37:507–514

    Article  CAS  Google Scholar 

  • Hu Q, Miyashita H, Iwasaki I, Kurano N, Miyachi S, Iwaki M, Itoh S (1998) A photosystem I reaction center driven by chlorophyll d in oxygenic photosynthesis. Proc Natl Acad Sci USA 95:13319–13323

    Article  PubMed  CAS  Google Scholar 

  • Inoue H, Tsuchiya T, Satoh S, Miyashita H, Kaneko T, Tabata S, Tanaka A, Mimuro M (2004) Unique constitution of photosystem I with a novel subunit in the cyanobacterium Gloeobacter violaceus PCC 7421. FEBS Lett 578:275–279

    Article  PubMed  CAS  Google Scholar 

  • Kaneko T, Sato S, Kotani H, Tanaka A, Asamizu E, Nakamura Y, Miyajima N, Hirosawa M, Sugiura M, Sasamoto S, Kimura T, Hosouchi T, Matsuno A, Muraki A, Nakazaki N, Naruo K, Okumura S, Shimpo S, Takeuchi C, Wada T, Watanabe A, Yamada M, Yasuda M, Tabata S (1996) Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC 6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res 3:109–136

    Article  PubMed  CAS  Google Scholar 

  • Kato Y, Nakamura A, Suzuwa T, Yamashita M, Watanabe T (2007) Redox potentials and spectroscopic properties of the primary electron donor P700 of photosystem I. Plant Cell Physiol 48:S169 (Suppl)

    Google Scholar 

  • Kobayashi M, Ohashi S, Iwamoto K, Shiraiwa Y, Kato Y, Watanabe T (2007) Redox potential of chlorophyll d in vitro. Biochim Biophys Acta 1767:596–602

    Article  PubMed  CAS  Google Scholar 

  • Koyama K, Tsuchiya T, Akimoto S, Yokono M, Miyashita H, Mimuro M (2006) New linker proteins in phycobilisomes isolated from the cyanobacterium Gloeobacter violaceus PCC 7421. FEBS Lett 580:3457–3461

    Article  PubMed  CAS  Google Scholar 

  • Koyama K, Suzuki H, Noguchi T, Akimoto S, Tsuchiya T, Mimuro M (2008) Oxygen evolution activities in the periplasm of cyanobacterium Gloeobacter violaceus PCC 7421. Biochim Biophys Acta 1777:369–378

    Article  PubMed  CAS  Google Scholar 

  • Kühl M, Chen M, Ralph PJ, Schreiber U, Larkum AWD (2005) A niche for cyanobacteria containing chlorophyll d. Nature 433:820

    Article  PubMed  CAS  Google Scholar 

  • Kumazaki S, Abiko K, Ikegami I, Iwaki M, Itoh S (2002) Energy equilibration and primary charge separation in chlorophyll d-based photosystem I reaction center isolated from Acaryochloris marina. FEBS Lett 530:153–157

    Article  PubMed  CAS  Google Scholar 

  • Larkum AWD, Kühl M (2005) Chlorophyll d: the puzzle resolved. Trends Plant Sci 10:355–357

    Article  PubMed  CAS  Google Scholar 

  • Manning WM, Strain HH (1943) Chlorophyll d, a green pigment of red algae. J Biol Chem 151:1–19

    CAS  Google Scholar 

  • Mathis P (1990) Compared structure of plant and bacterial photosynthetic reaction centers. Evolutionary implications. Biochim Biophys Acta 1018:163–167

    Article  CAS  Google Scholar 

  • Miller SR, Augustine S, Olson TL, Blankenship RE, Selker J, Wood AM (2005) Discovery of a free-living chlorophyll d-producing cyanobacterium with a hybrid proteobacterial/cyanobacterial small-subunit rRNA gene. Proc Natl Acad Sci USA 102:850–855

    Article  PubMed  CAS  Google Scholar 

  • Mimuro M, Tanaka A (2004) The in vivo and in vitro reconstitution of pigment-protein complexes, and its implication in acquiring a new system. Photosynth Res 81:129–137

    Article  CAS  Google Scholar 

  • Mimuro M, Akimoto S, Gotoh T, Yokono M, Akiyama M, Tsuchiya T, Miyashita H, Kobayashi M, Yamazaki I (2004) Identification of the primary electron donor in PS II of the Chl d-dominated cyanobacterium Acaryochloris marina. FEBS Lett 556:95–98

    Article  PubMed  CAS  Google Scholar 

  • Mimuro M, Tsuchiya T, Inoue H, Sakuragi Y, Itoh Y, Gotoh T, Miyashita H, Bryant DA, Kobayashi M (2005) The secondary electron acceptor of photosystem I in Gloeobacter violaceus PCC7421 is menaquinone–4 that is synthesized by a unique but unknown pathway. FEBS Lett 579:3493–3496

    Article  PubMed  CAS  Google Scholar 

  • Miyashita H, Ikemoto H, Kurano N, Adachi K, Chihara M, Miyachi S (1996) Chlorophyll d as a major pigment. Nature 383:402

    Article  CAS  Google Scholar 

  • Miyashita H, Adachi K, Kurano N, Ikemoto H, Chihara M, Miyachi S (1997) Pigment composition of a novel oxygenic photosynthetic prokaryote containing chlorophyll d as the major chlorophyll. Plant Cell Physiol 38:274–281

    CAS  Google Scholar 

  • Miyashita H, Ikemoto H, Kurano N, Miyachi S, Chihara M (2003) Acaryochloris marina gen. et. sp. nov. (cyanobacteria), an oxygenic photosynthetic prokaryote containing Chl d as a major pigment. J Phycol 39:1247–1253

    Article  CAS  Google Scholar 

  • Mulkidjanian AY, Koonin EV, Makarova KS, Mekhedov SL, Sorokin A, Wolf YI, Dufresne A, Partensky F, Burd H, Kaznadzey D, Haselkorn R, Galperin MY (2006) The cyanobacterial genome core and the origin of photosynthesis. Proc Natl Acad Sci USA 103:13126–13131

    Article  PubMed  CAS  Google Scholar 

  • Murakami A, Miyashita H, Iseki M, Adachi K, Mimuro M (2004) Chlorophyll d in an epiphytic cyanobacterium of red algae. Science 303:1633

    Article  PubMed  CAS  Google Scholar 

  • Nakamura Y, Kaneko T, Sato S, Mimuro M, Miyashita H, Tsuchiya T, Sasamoto S, Watanabe A, Kawashima K, Kishida Y, Kiyokawa C, Kohara M, Matsumoto M, Matsuno A, Nakazaki N, Shimpo S, Takeuchi C, Yamada M, Tabata S (2003) Complete genome structure of Gloeobacter violaceus PCC 7421, a cyanobacterium that lacks thylakoids. DNA Res 10:137–145

    Article  PubMed  CAS  Google Scholar 

  • Nelissen B, van de Peer Y, Wilmotte A, De Wachter R (1995) An early origin of plastids within the cyanobacterial divergence is suggested by evolutionary trees based on complete 16S rRNA sequences. Mol Biol Evol 12:1166–1173

    PubMed  CAS  Google Scholar 

  • Ohkubo S, Miyashita H, Murakami A, Takeyama H, Tsuchiya T, Mimuro M (2006) Molecular detection of epiphytic Acaryochloris spp. on marine macroalgae. Appl Environ Microbiol 72:7912–7915

    Article  PubMed  CAS  Google Scholar 

  • Olson JM, Blankenship RE (2004) Thinking about the evolution of photosynthesis. Photosynth Res 80:373–386

    Article  PubMed  CAS  Google Scholar 

  • Prokhorenko VI, Holzwarth AR (2000) Primary processes and structure of the photosystem II reaction center: a photon echo study. J Phys Chem B 104:11563–11578

    Article  CAS  Google Scholar 

  • Rippka R, Waterbury J, Cohen-Bazire G (1974) A cyanobacterium which lacks thylakoids. Arch Microbiol 100:419–436

    Article  CAS  Google Scholar 

  • Sagromsky H (1960) Beitrag zur Kenntnis der Rotalgenpigmente III. Ber Deut Bot Ges 73:358–362

    CAS  Google Scholar 

  • Schlodder E, Çetin M, Eckert H-J, Schmitt F-J, Barber J, Telfer A (2007) Both chlorophylls a and d are essential for the photochemistry in photosystem II of the cyanobacteria, Acaryochloris marina. Biochim Biophys Acta 1767:589–595

    Article  PubMed  CAS  Google Scholar 

  • Selstam E, Campbell D (1996) Membrane lipid composition of the unusual cyanobacterium Gloeobacter violaceus sp. PCC 7421, which lacks sulfoquinovosyl diacylglycerol. Arch Microbiol 166:132–135

    Article  CAS  Google Scholar 

  • Shevela D, Nöring B, Eckert HJ, Messinger J, Renger G (2006) Characterization of the water oxidizing complex of photosystem II of the Chl d-containing cyanobacterium Acaryochloris marina via its reactivity towards endogenous electron donors and acceptors. Phys Chem Chem Phys 8:3460–3466

    Article  PubMed  CAS  Google Scholar 

  • Shi T, Falkowski PG (2008) Genome evolution in cyanobacteria: the stable core and the variable shell. Proc Natl Acad Sci USA 105:2510–2515

    Article  PubMed  CAS  Google Scholar 

  • Strain HH (1958) Chloroplast pigments and chromatographic analysis. Thirty-second annual Priestley lectures. The Pennsylvania State University, University Park, Pennsylvania

    Google Scholar 

  • Swingley WD, Blankenship RE, Raymond J (2007) Insights into cyanobacterial evolution from comparative genomics. In: Herrero A, Flores E (eds) Genomics and molecular biology of cyanobacteria. Horizon Scientific Press, Norwich, UK, pp 22–43

    Google Scholar 

  • Swingley WD, Blankenship RE, Raymond J (2008a) Integrating Markov clustering and molecular phylogenetics to reconstruct the cyanobacterial species tree from conserved protein families. Mol Biol Evol 25:643–654

    Article  PubMed  CAS  Google Scholar 

  • Swingley WD, Chen M, Cheung, Cheng PC, Conrad AL, Dejesa LC, Hao J, Honchak BM, Karbach LE, Kurdoglu A, Lahiri S, Mastrian SD, Miyashita H, Page L, Ramakrishna P, Satoh S, Sattley WM, Shimada Y, Taylor HL, Tomo T, Tsuchiya T, Wang ZT, Raymond J, Mimuro M, Blankenship RE, Touchman JW (2008b) Niche adaptation and genome expansion in the chlorophyll d-producing cyanobacterium Acaryochloris marina, Proc Natl Acad Sci USA 105:2005–2010

  • Telfer A, Pascal A, Barber J, Schenderlein M, Schlodder E, Çetin M (2007) Electron transfer reaction in photosystem I and II of the chlorophyll d containing cyanobacterium, Acaryochloris marina. Paper presented at the 14th international congress of photosynthesis, Scottish Exhibition and Conference Centre, Glasgow, 22–27 July 2007

  • Tomo T, Okubo T, Akimoto S, Yokono M, Miyashita H, Tsuchiya T, Noguchi T, Mimuro M (2007) Identification of the special pair of photosystem II in a chlorophyll d-dominated cyanobacterium. Proc Natl Acad Sci USA 104:7283–7288

    Article  PubMed  CAS  Google Scholar 

  • Tomo T, Kato Y, Suzuki T, Akimoto S, Okubo T, Noguchi T, Hasegawa K, Tsuchiya T, Tanaka K, Fukuya M, Dohmae N, Watanabe T, Mimuro M (2008) Characterization of highly-purified photosystem I complexes from the chlorophyll d-dominated cyanobacterium Acaryochloris marina, MBIC 11017. J Biol Chem. doi:10.1074/jbc.M801805200

  • Tsuchiya T, Takaichi S, Misawa N, Maoka T, Miyashita H, Mimuro M (2005) The cyanobacterium Gloeobacter violaceus PCC7421 uses bacterial-type phytoene desaturase in carotenoid biosynthesis. FEBS Lett 579:2125–2129

    Article  PubMed  CAS  Google Scholar 

  • Xiong J, Bauer CE (2002) Complex evolution of photosynthesis. Annu Rev Plant Biol 53:503–521

    Article  PubMed  CAS  Google Scholar 

  • Zhaxybayeva O, Gogarten JP, Charlebois RL, Doolittle WF, Papke RT (2006) Phylogenetic analyses of cyanobacterialgenomes: quantification of horizontal gene transfer events. Genome Res 16:1099–1108

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Prof. A. Tanaka, Hokkaido University, and Dr. A. Murakami, Kobe University, for discussion and comments on the MS. This study was supported by a Grant-in-Aid for Creative Scientific Research (No. 17GS0314) from the Japanese Society for the Promotion of Science (JSPS), and by Scientific Research on Priority Areas “Comparative Genomics” (No’s 17018022 and 18017016) from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT), Japan, to MM, and by a Grant-in-Aid for Scientific Research (No. 19614007) from MEXT to T. Tomo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mamoru Mimuro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mimuro, M., Tomo, T. & Tsuchiya, T. Two unique cyanobacteria lead to a traceable approach of the first appearance of oxygenic photosynthesis. Photosynth Res 97, 167–176 (2008). https://doi.org/10.1007/s11120-008-9311-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-008-9311-4

Keywords

Navigation