Skip to main content

Advertisement

Log in

Distinct physiological responses to a high light and low CO2 environment revealed by fluorescence quenching in photoautotrophically grown Chlamydomonas reinhardtii

  • Research Article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Mechanisms for countering environmental stress are essential to photosynthetic organisms. Alteration of the photosynthetic apparatus, a mechanism for balancing the flux of light energy and carbon fixation, can be characterized by fluorescence properties. In this study, we have established a simple protocol to determine the extent of energy-dependent quenching (qE) and quenching by state transition (qT) in Chlamydomonas cells by examining their fluorescence properties under light fluctuations. We identified qE as the uncoupler-sensitive NPQ component that was rapidly relaxed upon transition to dark conditions. We characterized the qT component by determining low-temperature fluorescence spectra and analyzing a state-transition-less mutant. By these methods, we observed that similar abiotic stresses—high light conditions (where excess energy is supplied) and low CO2 conditions (where energy utilization is limited)—induced different types of NPQ. High light conditions induced mainly qE-quenching that increased gradually while low CO2 conditions induced mainly qT-quenching that peaked in 20 min and then decreased gradually. That high light and low carbon signals induced different physiological responses suggests that they triggered different genetic responses, which altered protein expression under each of the conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CCM:

Carbon concentrating mechanism

Ci:

Inorganic carbons

Fm :

Maximal yield of fluorescence

Fm′:

Quenched maximal yield of fluorescence

HL:

High light

HL400 :

High light illumination at 400 μmol photon m−2 s−1

LC:

Low CO2

LHC:

Light-harvesting complexes

NPQ:

Non-photochemical quenching

PQ:

Plastoquinone

PSI and PSII:

Photosystem I and II

References

  • Aizawa K, Miyachi S (1986) Carbonic anhydrase and CO2 concentrating mechanisms in microalgae and cyanobacteria. FEMS Microbiol Rev 39:215–233

    Article  CAS  Google Scholar 

  • Anwaruzzaman M, Chin BL, Li XP, Lohr M, Martinez DA, Niyogi KK (2004) Genomic analysis of mutants affecting xanthophyll biosynthesis and regulation of photosynthetic light harvesting in Chlamydomonas reinhardtii. Photosynth Res 82:265–276

    Article  CAS  PubMed  Google Scholar 

  • Bennoun P (1994) Chlororespiration revisited;Mitochondrial-plastid interactions in Chlamydomonas. Biochim Biophys Acta 1186:59–66

    Article  CAS  Google Scholar 

  • Casper-Lindley C, Björkman O (1996) Nigericin insensitive post-illumination reduction in fluorescence yield in Dunaliella tertiolecta (chlorophyte). Photosynth Res 50:209–222

    Article  CAS  Google Scholar 

  • Demmig-Adams B (1990) Carotenoids and photoprotection in plants: a role for the xanthophyll zeaxanthin. Biochim Biophys Acta 1020:1–24

    Article  CAS  Google Scholar 

  • Endo T, Asada K (1996) Dark induction of the non-photochemical quenching of chlorophyll fluorescence by acetate in Chlamydomonas reinhardtii. Plant Cell Physiol 37:551–555

    CAS  Google Scholar 

  • Escoubas JM, Lomas M, LaRoche J, Falkowski PG (1995) Light intensity regulation of cab gene transcription is signaled by the redox state of the plastoquinone pool. Proc Natl Acad Sci USA 92:10237–10241

    Article  CAS  PubMed  Google Scholar 

  • Fett JP, Coleman JR (1994) Regulation of periplasmic carbonic anhydrase expression in Chlamydomonas reinhardtii by acetate and pH. Plant Physiol 106:103–108

    CAS  PubMed  Google Scholar 

  • Finazzi G, Rappaport F, Furia A, Fleischman M, Rochaix J-D, Zito F, Forti G (2002) Involvement of state transitions in the switch between linear and cyclic electron flow in Chlamydomonas reinhardtii. EMBO Rep 3:280–285

    Article  CAS  PubMed  Google Scholar 

  • Finazzi G, Johnson GN, Dall’Osto L, Joliot P, Wollman F-A, Bassi R (2004) A zeaxanthin-independent nonphotochemical quenching mechanism localized in the photosystem II core complex. Proc Natl Acad Sci USA 101:12375–12380

    Article  CAS  PubMed  Google Scholar 

  • Finazzi G, Johnson GN, Dall’Osto L, Zito F, Bonente G, Bassi R, Wollman F-A (2006) Nonphotochemical quenching of chlorophyll fluorescence in Chlamydomonas reinhardtii. Biochemistry 45:1490–1498

    Article  CAS  PubMed  Google Scholar 

  • Förster B, Osmond CB, Boynton J (2001) Very high light resistant mutants of Chlamydomonas reinhardtii: Responses of photosystem II, nonphotochemical quenching and xanthophyll pigments to light and CO2. Photosynth Res 67:5–15

    Article  PubMed  Google Scholar 

  • Gans P, Rebeille F (1990) Control in the dark of the plastoquinone redox state by mitochondrial activity in Chlamydomonas reinhardtii. Biochim Biophys Acta 1015:150–155

    Article  CAS  Google Scholar 

  • Garnier J, Maroc J, Guyon D (1986) Low-temperature fluorescence emission spectra and chlorophyll-protein complexes in mutants of Chlamydomonas reinhardtii: evidence for a new chlorophyll-a-protein complex related to Photosystem I. Biochim Biophys Acta 851:395–406

    Article  CAS  Google Scholar 

  • Gilmore AM, Björkman O (1994) Adenine nucleotides and the xanthophyll cycle in leaves. Planta 192:537–544

    Article  CAS  Google Scholar 

  • Gilmore AM, Björkman O (1995) Temperature-sensitive coupling and uncoupling of ATPase-mediated, nonradiative energy dissipation: similarities between chloroplasts and leaves. Planta 197:646–654

    Article  CAS  Google Scholar 

  • Gilmore AM, Yamamoto HY (1992) Dark induction of zeaxanthin-dependent monophotochemical fluorescence quenching mediated by ATP. Proc Natl Acad Sci USA 89:1899–1903

    Article  CAS  PubMed  Google Scholar 

  • Heifetz PB, Forster B, Osmond CB, Giles LJ, Boynton JE (2000) Effects of acetate on facultative autotrophy in Chlamydomonas reinhardtii assessed by photosynthetic measurements and stable isotope analyses. Plant Physiol 122:1439–1445

    Article  CAS  PubMed  Google Scholar 

  • Hihara Y, Kamei A, Kanehisa M, Kaplan A, Ikeuchi M (2001) DNA microarray analysis of cyanobacterial gene expression during acclimation to high light. Plant Cell 13:793–806

    Article  CAS  PubMed  Google Scholar 

  • Huang L, McCluskey MP, Ni H, LaRossa RA (2002) Global gene expression profiles of the cyanobacterium Synechocystis sp. strain PCC 6803 in response to irradiation with UV-B and white light. J Bacteriol 184:6845–6858

    Article  CAS  PubMed  Google Scholar 

  • Im C-S, Grossman AR (2001) Identification and regulation of high ligh-induced genes in Chlamydomonas reinhardtii. Plant J 30:301–313

    Article  Google Scholar 

  • Im C-S, Zhang Z, Shrager J, Chang C-W, Grossman AR (2003) Analysis of light and CO2 regulation in Chlamydomonas reinhardtii using genome-wide approaches. Photosynth Res 75:111–125

    Article  CAS  PubMed  Google Scholar 

  • Kovács L, Wiessner W, Kis M, Nagy F, Mende D, Demeter S (2000) Short- and long-term redox regulation of photosynthetic light energy distribution and photosystem stoichiometry by acetate metabolism in the green alga, Chlamydobotrys stellata. Photosynth Res 65:231–247

    Article  PubMed  Google Scholar 

  • Li XP, Bjorkman O, Shih C, Grossman AR, Rosenquist M, Jansson S, Niyogi KK (2000) A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature 403:391–395

    Article  CAS  PubMed  Google Scholar 

  • Masuda T, Tanaka A, Melis A (2003) Chlorophyll antenna size adjustments by irradiance in Dunaliella salina involve coordinate regulation of chlorophyll a oxygenase (CAO) and Lhcb gene expression. Plant Mol Biol 51:757–771

    Article  CAS  PubMed  Google Scholar 

  • Matsubara S, Chow WS (2004) Populations of photoinactivated photosystem II reaction centers characterized by chlorophyll a fluorescence lifetime in vivo. Proc Natl Acad Sci USA 52:18234–18239

    Article  CAS  Google Scholar 

  • McGinn P, Price GD, Maleszka R, Badger MR (2003) Inorganic carbon limitation and light control the expression of transcripts related to the CO2-concentrating mechanism in the cyanobacterium Synechocystis sp. strain PCC6803. Plant Physiol 132:218–229

    Article  CAS  PubMed  Google Scholar 

  • Minagawa J, Takahashi Y (2004) Structure, function and assembly of Photosystem II and its light-harvesting proteins. Photosyth Res 82:241–263

    Article  CAS  Google Scholar 

  • Müller P, Li X-P, Niyogi KK (2001) Non-photochemical quenching. A response to excess light energy. Plant Physiol 125:1558–1566

    Article  PubMed  Google Scholar 

  • Palmqvist K, Sundblad G, Wingsle G, Samuelsson G (1990) Acclimation of photosynthetic light reactions during induction of inorganic carbon accumulation in the green alga Chlamydomonas reinhardtii. Plant Physiol 94:357–366

    CAS  PubMed  Google Scholar 

  • Spalding MH, Critchley C, Govindjee, Orgren WL (1984) Influence of carbon dioxide concentration during growth on fluorescence induction characteristics of the green alga Chlamydomonas reinhardtii. Photosynth Res 5:169–176

  • Sueoka N (1960) Mitotic replication of deoxyribonucleic acid in Chlamydomonas reinhardi. Proc Natl Acad Sci USA 46:83–91

    Article  CAS  PubMed  Google Scholar 

  • Teramoto H, Nakamori A, Minagawa J, Ono T-A (2002) Light-intensity-dependent expression of Lhc gene family encoding light-harvesting chlorophyll-a/b proteins of photosystem II in Chlamydomonas reinhardtii. Plant Physiol 130:325–333

    Article  CAS  PubMed  Google Scholar 

  • Wollman F-A (2001) State transitions reveal the dynamics and flexibility of the photosynthetic apparatus. EMBO J 20:3623–3630

    Article  CAS  PubMed  Google Scholar 

  • Woodger FJ, Badger MR, Price GD (2003) Inorganic carbon limitation induces transcripts encoding components of the CO2-concentrating mechanism in Synechococcus sp. PCC7942 through a redox-independent pathway. Plant Physiol 133:2069–2080

    Article  CAS  PubMed  Google Scholar 

  • Wraight CA, Crofts AR (1970) Energy-dependent quenching of chlorophyll a fluorescence in isolated chloroplasts. Eur J Biochem 17:319–327

    Article  CAS  PubMed  Google Scholar 

  • Zito F, Vinh J, Popot J-L, Finazzi G (2002) Chimeric Fusions of Subunit IV and PetL in the b 6 f Complex of Chlamydomonas reinhardtii. J Biol Chem 277:12446–12455

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are particularly grateful to Dr. F.-A. Wollman for the gift of the DLSΔ mutant and Dr. K.Takizawa for the valuable discussion; M.I. is grateful for the JSPS Research Fellowship for Young Scientists from the Japan Society for the Promotion of Science; This work was supported in part by Grants-in-Aid for Scientific Research to J.M. from the Ministry of Education, Culture, Sports, Science and Technology (No. 17570029, 18GS0318).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Minagawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iwai, M., Kato, N. & Minagawa, J. Distinct physiological responses to a high light and low CO2 environment revealed by fluorescence quenching in photoautotrophically grown Chlamydomonas reinhardtii . Photosynth Res 94, 307–314 (2007). https://doi.org/10.1007/s11120-007-9220-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-007-9220-y

Keywords

Navigation