Skip to main content
Log in

Photosystem II: Structure and mechanism of the water:plastoquinone oxidoreductase

  • Research Article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

This mini-review briefly summarizes our current knowledge on the reaction pattern of light-driven water splitting and the structure of Photosystem II that acts as a water:plastoquinone oxidoreductase. The overall process comprises three types of reaction sequences: (a) light-induced charge separation leading to formation of the radical ion pair P680+•Q −•A ; (b) reduction of plastoquinone to plastoquinol at the QB site via a two-step reaction sequence with Q −•A as reductant and (c) oxidative water splitting into O2 and four protons at a manganese-containing catalytic site via a four-step sequence driven by P680+• as oxidant and a redox active tyrosine YZ acting as mediator. Based on recent progress in X-ray diffraction crystallographic structure analysis the array of the cofactors within the protein matrix is discussed in relation to the functional pattern. Special emphasis is paid on the structure of the catalytic sites of PQH2 formation (QB-site) and oxidative water splitting (Mn4O x Ca cluster). The energetics and kinetics of the reactions taking place at these sites are presented only in a very concise manner with reference to recent up-to-date reviews. It is illustrated that several questions on the mechanism of oxidative water splitting and the structure of the catalytic sites are far from being satisfactorily answered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

BChl:

Bacteriochlorophyl

BPheo:

Bacteriopheophytin

Chl:

Chlorophyll

EET:

Excited state energy transfer

ENDOR:

Electron nuclear double resonance

EPR:

Electron paramagnetic resonance

ESEEM:

Electron spin echo envelope modulation

ET:

Electron transfer

EXAFS:

Extended X-ray absorption fine structure

FTIR:

Fourier transform infra red

MGDG:

Monogalactosyldiacylglycerol

NHFe:

Nonheme iron

PBRC :

Purple bacterial reaction center

PG:

Phosphatidylglycerol

Pheo:

Pheophytin

PQ:

Plastoquinone

PS I:

Photosystem I

PS II:

Photosystem II

QENS:

Quasielastic neutron scattering

RC:

Reaction center

RP:

Radical pair

SQDG:

Sulfoquinovosyldiacylglycerol

TMH:

Transmembrane helix

UQ:

Ubiquinone

WOC:

Water-oxidizing complex

XANES:

X-ray absorption near edge spectroscopy

XRDC:

X-ray diffraction crystallography

References

  • Anderson AB, Albu TV (1999) Ab initio determination of reversible potentials and activation energies for outer-sphere oxygen reduction to water and the reverse oxidation reaction. J Am Chem Soc 121:11855–11863

    Article  CAS  Google Scholar 

  • Babcock GT, Blankenship RE, Sauer K (1976) Reaction kinetics for positive charge accumulation on the water side of chloroplast photosystem II. FEBS Lett 61:286–289

    Article  PubMed  CAS  Google Scholar 

  • Bader KP, Renger G, Schmidt GH (1993) A mass spectroscopic analysis of the water-splitting reaction. Photosynth Res 38:355–361

    Article  CAS  Google Scholar 

  • Barber J, Nield J, Morris EP, Hankamer B (1999) Subunit positioning in photosystem II revisited. Trends Biochem Sci 24:43–45

    Article  PubMed  CAS  Google Scholar 

  • Barry BA, Babcock GT (1987) Tyrosine radicals are involved in the photosynthetic oxygen-evolving system. Proc Natl Acad Sci USA 84:7099–7103

    Article  PubMed  CAS  Google Scholar 

  • Bernarding J, Eckert HJ, Eichler HJ, Napiwotzki A, Renger G (1994) Kinetic studies on the stabilization of the primary radical pair P680+ Pheo in different photosystem II preparations from higher plants. Photochem Photobiol 59:566–573

    CAS  Google Scholar 

  • Berthomieu C, Hienerwadel R (2001) Iron coordination in photosystem II: interaction between bicarbonate and the QB pocket studied by Fourier transform infrared spectroscopy. Biochemistry 40:4044–4052

    Article  PubMed  CAS  Google Scholar 

  • Biesiadka J, Loll B, Kern J, Irrgang K-D, Zouni A (2004) Crystal structure of cyanobacterial photosystem II at 3.2 Å resolution: a closer look at the Mn-cluster. Phys Chem Chem Phys 6:4733–4736

    Article  CAS  Google Scholar 

  • Blomberg MRA, Siegbahn PEM (2006) Different types of biological proton transfer reactions studied by quantum chemical methods. Biochim Biophys Acta 1757:969–980

    Article  PubMed  CAS  Google Scholar 

  • Bowes JM, Crofts AR, Itoh S (1979) High-potential acceptor for photosystem-II. Biochim Biophys Acta 547:320–335

    Article  PubMed  CAS  Google Scholar 

  • Boekema EJ, Hankamer B, Bald D, Kruip J, Nield J, Boonstra AF, Barber J, Rögner M (1995) Supramolecular structure of the photosystem II complex from green plants and cyanobacteria. Proc Natl Acad Sci USA 92:175–179

    Article  PubMed  CAS  Google Scholar 

  • Boekema EJ, van Breemen JF, van Roon H, Dekker JP (2000) Arrangement of photosystem II supercomplexes in crystalline macrodomains within the thylakoid membrane of green plant chloroplasts. J Mol Biol 301:1123–1133

    Article  PubMed  CAS  Google Scholar 

  • Breton J (2007) Steady-state FTIR spectra of the photoreduction of QA and QB in Rhodobacter sphaeroides reaction centers provide evidence against the presence of a proposed transient electron acceptor X between the two quinones. Biochemistry 46:4459–4465

    Article  PubMed  CAS  Google Scholar 

  • Brettel K, Schlodder E, Witt HT (1984) Nanosecond reduction kinetics of photooxidized chlorophyll-a II (P-680) in single flashes as a probe for the electron pathway, H+-release and charge accumulation in the O2-evolving complex. Biochim Biophys Acta 766:403–415

    Article  CAS  Google Scholar 

  • Burda K, Bader KP, Schmid GH (2001) An estimation of the size of the water cluster present at the cleavage site of the water splitting enzyme. FEBS Lett 491:81–84

    Article  PubMed  CAS  Google Scholar 

  • Burnap RL (2004) D1 protein processing and Mn cluster assembly in light of the emerging photosystem II structure. Phys Chem Chem Phys 6:4803–4809

    Article  CAS  Google Scholar 

  • Careri G, Gratton E, Yang PH, Rupley JA (1980) Correlation of IR spectroscopic, heat capacity, diamagnetic susceptibility and enzymatic measurements on lysozyme powder. Nature 284:572–573

    Article  PubMed  CAS  Google Scholar 

  • Carugo O, Carugo KD (2005) When X-rays modify the protein structure: radiation damage at work. Trends Biochem Sci 30:213–219

    Article  PubMed  CAS  Google Scholar 

  • Cheap H, Tandori J, Derrien V, Benoit M, de Oliveira P, Koepke J, Lavergne J, Maroti P, Sebban P (2007) Evidence for delocalized anticooperative flash induced proton binding as revealed by mutants at the M266His iron ligand in bacterial reaction centers. Biochemistry 46:4510–4521

    Article  PubMed  CAS  Google Scholar 

  • Cheniae GM, Martin IF (1973) Absence of oxygen-evolving capacity in dark-grown Chlorella - photoactivation of oxygen-evolving centers. Photochem Photobiol 17:441–459

    CAS  Google Scholar 

  • Chow WS, Aro EM (2005) Photoinactivation and mechanism of recovery. In: Wydrzynski T, Satoh K (eds) Photosystem II: The light-driven water:plastoquinone oxidoreductase Advances in photosynthesis and respiration, vol 22. Springer, Dordrecht, pp 627–648

    Google Scholar 

  • Chu HA, Hillier W, Debus RJ (2004) Evidence that the C-terminus of the D1 polypeptide of photosystem II is ligated to the manganese ion that undergoes oxidation during the S1 to S2 transition: an isotope-edited FTIR study. Biochemistry 43:3152–3166

    Article  PubMed  CAS  Google Scholar 

  • Clausen J, Junge W (2004) Detection of an intermediate of photosynthetic water oxidation. Nature 430:480–483

    Article  PubMed  CAS  Google Scholar 

  • de Wijn R, van Gorkom HJ (2001) Kinetics of electron transfer from QA to QB in photosystem II. Biochemistry 40:11912–11922

    Article  PubMed  CAS  Google Scholar 

  • Debus RJ (1992) The manganese and calcium ions of photosynthetic oxygen evolution. Biophys Biochim Acta 1102:269–352

    Article  CAS  Google Scholar 

  • Debus RJ (2001) Amino acid residues that modulate the properties of tyrosine YZ and the manganese cluster in the water oxidizing complex of photosystem II. Biochim Biophys Acta 1503:164–186

    Article  PubMed  CAS  Google Scholar 

  • Debus RJ (2005) The catalytic manganese cluster: protein ligation. In: Wydrzynski T, Satoh K (eds) Photosystem II: The light driven water:plastoquinone oxidoreductase Advances in photosynthesis and respiration, vol 22. Springer, Dordrecht, pp 261–284

    Google Scholar 

  • Debus RJ, Feher G, Okamura MY (1986) Iron-depleted reaction centers from Rhodopseudomonas sphaeroides R-26.1: characterization and reconstitution with Fe2+, Mn2+, Co2+, Ni2+, Cu2+, and Zn2+. Biochemistry 25:2276–2287

    Article  PubMed  CAS  Google Scholar 

  • Debus RJ, Barry BA, Sithole I, Babcock GT, McIntosh L (1988) Site-directed mutagenesis identifies a tyrosine radical involved in the photosynthetic oxygen-evolving system. Proc Natl Acad Sci USA 85:427–430

    Article  PubMed  CAS  Google Scholar 

  • Debus RJ, Campbell KA, Gregor W, Li ZL, Burnap RL, Britt RD (2001) Does histidine 332 of the D1 polypeptide ligate the manganese cluster in photosystem II? An electron spin echo envelope modulation study. Biochemistry 40:3690–3699

    Article  PubMed  CAS  Google Scholar 

  • Debus RJ, Strickler MA, Walker LM, Hillier W (2005) No evidence from FTIR difference spectroscopy that aspartate-170 of the D1 polypeptide ligates a manganese ion that undergoes oxidation during the S0 to S1, S1 to S2, or S2 to S3 transitions in photosystem II. Biochemistry 44:1367–1374

    Article  PubMed  CAS  Google Scholar 

  • Deisenhofer J, Epp O, Miki K, Huber R, Michel H (1985) Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3Å resolution. Nature 318:618–624

    Article  Google Scholar 

  • Dekker JP, van Gorkom HJ, Brok M, Ouwehand L (1984) Optical characterization of photosystem-II electron-donors. Biochim Biophys Acta 764:301–309

    Article  CAS  Google Scholar 

  • DeLano WL (2002) The PyMOL molecular graphics system. DeLano Scientific, Palo Alto, CA, USA. http://www.pymol.org

  • Dorlet P, Xiong L, Sayre RT, Un S (2001) High-field EPR study of the pheophytin anion radical in wild type and D1-E130 mutants of photosystem II in Chlamydomonas reinhardtii. J Biol Chem 276:22313–22316

    Article  PubMed  CAS  Google Scholar 

  • Eaton-Rye JJ, Govindjee (1988) Electron transfer through the quinone acceptor complex of photosystem II in bicarbonate-depleted spinach thylakoid membranes as a function of actinic flash number and frequency. Biochim Biophys Acta 935:237–247

    Article  CAS  Google Scholar 

  • Eckert H-J, Renger G (1988) Temperature-dependence of P680+ reduction in O2-evolving PS-II membrane-fragments at different redox states Si of the water oxidizing system. FEBS Lett 236:425–431

    Article  CAS  Google Scholar 

  • Eckert H-J, Wiese N, Bernarding J, Eichler H-J, Renger G (1988) Analysis of the electron transfer from Pheo to QA in PS II membrane fragments from spinach by time resolved 325 nm absorption changes in the picosecond domain. FEBS Lett 240:153–158

    Article  PubMed  CAS  Google Scholar 

  • Ferreira KN, Iverson TM, Maghlaoui K, Barber J, Iwata S (2004) Architecture of the photosynthetic oxygen-evolving center. Science 303:1831–1838

    Article  PubMed  CAS  Google Scholar 

  • Flores M, Isaacson R, Abresch E, Calvo R, Lubitz W, Feher G (2007) Protein–cofactor interactions in bacterial reaction centers from Rhodobacter sphaeroides R-26: II. Geometry of the hydrogen bonds to the primary quinone QA - by 1H and 2H ENDOR spectroscopy. Biophys J 92:671–682

    Article  PubMed  CAS  Google Scholar 

  • Fromme P, Jordan P, Krauss N (2001) Structure of photosystem I. Biochim Biophys Acta 1507:5–31

    Article  PubMed  CAS  Google Scholar 

  • Garbers A, Reifarth F, Kurreck J, Renger G, Parak F (1998) Correlation between protein flexibility and electron transfer from QA * to QB in PSII membrane fragments from spinach. Biochemistry 37:11399–11404

    Article  PubMed  CAS  Google Scholar 

  • Gibasiewicz K, Dobek A, Breton J, Leibl W (2001) Modulation of primary radical pair kinetics and energetics in photosystem II by the redox state of the quinone electron acceptor QA. Biophys J 80:1617–1630

    Article  PubMed  CAS  Google Scholar 

  • Gläser M, Wolff C, Renger G (1976) Indirect evidence for a very fast recovery kinetics of chlorophyll-AII in spinach-chloroplasts. Z Naturforsch C 31:712–721

    PubMed  Google Scholar 

  • Gombos Z, Varkonyi Z, Hagio M, Iwaki M, Kovacs L, Masamoto K, Itoh S, Wada H (2002) Phosphatidylglycerol requirement for the function of electron acceptor plastoquinone QB in the photosystem II reaction center. Biochemistry 41:3796–3802

    Article  PubMed  CAS  Google Scholar 

  • Grabolle M, Haumann M, Müller C, Liebisch P, Dau H (2006) Rapid loss of structural motifs in the manganese complex of oxygenic photosynthesis by X-ray irradiation at 10–300 K. J Biol Chem 281:4580–4588

    Article  PubMed  CAS  Google Scholar 

  • Guallar V, Friesner RA (2004) Cytochrome P450CAM enzymatic catalysis cycle: a quantum mechanics/molecular mechanics study. J Am Chem Soc 124:8501–8508

    Article  CAS  Google Scholar 

  • Haag E, Irrgang K-D, Boekema EJ, Renger G (1990) Functional and structural analysis of photosystem II core complexes from spinach with high oxygen evolution capacity. Eur J Biochem 189:47–53

    Article  PubMed  CAS  Google Scholar 

  • Hansson Ö, Andreasson LE, Vänngard T (1986) Oxygen from water is coordinated to manganese in the S2 state of photosystem II. FEBS Lett 195:151–154

    Article  CAS  Google Scholar 

  • Haumann M, Liebisch P, Müller C, Barra M, Grabolle M, Dau H (2005) Photosynthetic O2 formation tracked by time-resolved X-ray experiments. Science 310:1019–1021

    Article  PubMed  CAS  Google Scholar 

  • Hauss T, Dante S, Haines TH, Dencher NA (2005) Localization of coenzyme Q10 in the center of a deuterated lipid membrane by neutron diffraction. Biochim Biophys Acta 1710:57–62

    Article  PubMed  CAS  Google Scholar 

  • Hienerwadel R, Berthomieu C (1995) Bicarbonate binding to the non-heme iron of photosystem II investigated by Fourier transform infrared difference spectroscopy and 13C-labeled bicarbonate. Biochemistry 34:16288–16297

    Article  PubMed  CAS  Google Scholar 

  • Hienerwadel R, Grzybek S, Fogel C, Kreutz W, Okamura MY, Paddock ML, Breton J, Nabedryk E, Mäntele W (1995) Protonation of Glu L212 following QB formation in the photosynthetic reaction center of Rhodobacter sphaeroides: evidence from time-resolved infrared spectroscopy. Biochemistry 34:2832–2843

    Article  PubMed  CAS  Google Scholar 

  • Holzenburg A, Bewly MC, Wilson FH, Nicholson WV, Ford R (1993) Three-dimensional structure of photosystem II. Nature 363:470–472

    Article  CAS  Google Scholar 

  • Holzwarth AR, Müller MG, Reus M, Nowaczyk M, Sander J, Rögner M (2006) Kinetics and mechanism of electron transfer in intact photosystem II and in the isolated reaction center: pheophytin is the primary electron acceptor. Proc Natl Acad Sci USA 103:6895–6900

    Article  PubMed  CAS  Google Scholar 

  • Joliot P, Barbier IG, Chabaud R (1969) Un nouveau modelle des centres photochimique du système II. Photochem Photobiol 10:309–329

    CAS  Google Scholar 

  • Jordan P, Fromme P, Witt HT, Klukas O, Saenger W, Krauss N (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature 411:909–917

    Article  PubMed  CAS  Google Scholar 

  • Kaminskaya O, Renger G, Shuvalov VA (2003) Effect of dehydration on light-induced reactions in photosystem II: photoreactions of cytochrome b559. Biochemistry 42:8119–8132

    Article  PubMed  CAS  Google Scholar 

  • Kaminskaya O, Shuvalov VA, Renger G (2007) Evidence for a novel quinone binding site in the PS II complex which regulates the redox potential of Cyt b559. Biochemistry 46:1091–1105

    Article  PubMed  CAS  Google Scholar 

  • Kamiya N, Shen JR (2003) Crystal structure of oxygen-evolving photosystem II from Thermosynechococcus vulcanus at 3.7-Å resolution. Proc Natl Acad Sci USA 100:98–103

    Article  PubMed  CAS  Google Scholar 

  • Kasting JF, Siefert JL (2002) Life and the evolution of Earth’s atmosphere. Science 296:1066–1068

    Article  PubMed  CAS  Google Scholar 

  • Ke B (2001) Photosynthesis – photobiochemistry and photobiophysics. Advances in photosynthesis and respiration, vol 10. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Kern J, Loll B, Biesiadka J, Zouni A, Irrgang K-D, Saenger W (2005a) Cyanobacterial photosystem II at 3.2 Å resolution – the quinone binding pockets. Photosynth Res 84:153–159

    Article  PubMed  CAS  Google Scholar 

  • Kern J, Loll B, Lüneberg C, DiFiore D, Biesiadka J, Irrgang KD, Zouni A (2005b) Purification, characterisation and crystallisation of photosystem II from Thermosynechococcus elongatus cultivated in a new type of photobioreactor. Biochim Biophys Acta 1706:147–157

    Article  PubMed  CAS  Google Scholar 

  • Kimura Y, Ishii A, Yamanari T, Ono TA (2005a) Water-sensitive low-frequency vibrations of reaction intermediates during S-state cycling in photosynthetic water oxidation. Biochemistry 44:7613–7622

    Article  PubMed  CAS  Google Scholar 

  • Kimura Y, Mizusawa N, Yamanari T, Ishii A, Ono TA (2005b) Structural changes of D1 C-terminal alpha-carboxylate during S-state cycling in photosynthetic oxygen evolution. J Biol Chem 280:2078–2083

    Article  PubMed  CAS  Google Scholar 

  • Kirmaier C, Holten D, Debus RJ, Feher G, Okamura MY (1986) Primary photochemistry of iron-depleted and zinc-reconstituted reaction centers from Rhodopseudomonas sphaeroides. Proc Natl Acad Sci USA 83:6407–6411

    Article  PubMed  CAS  Google Scholar 

  • Kok B, Forbush B, McGloin M (1970) Cooperation of charges in photosynthetic oxygen evolution: I. A linear four step mechanism. Photochem Photobiol 11:457–475

    PubMed  CAS  Google Scholar 

  • Krieger A, Rutherford AW, Johnson GN (1995) On the determination of redox midpoint potential of the primary quinone electron-acceptor, QA, in photosystem II. Biochim Biophys Acta 1229:193–201

    Article  Google Scholar 

  • Krieger-Liszkay A, Rutherford AW (1998) Influence of herbicide binding on the redox potential of the quinone acceptor in photosystem II: relevance to photodamage and phytotoxicity. Biochemistry 37:17339–17344

    Article  PubMed  CAS  Google Scholar 

  • Kühn P, Eckert HJ, Eichler HJ, Renger G (2004) Analysis of the P680+. reduction pattern and its temperature dependence in oxygen evolving PS II core complexes from thermophilic cyanobacteria and higher plants. Phys Chem Chem Phys 6:4838–4843

    Article  CAS  Google Scholar 

  • Kühn P, Pieper J, Kaminskaya O, Eckert HJ, Lechner RE, Shuvalov V, Renger G (2005) Reaction pattern of Photosystem II: oxidative water cleavage and protein flexibility. Photosynth Res 84:317–323

    Article  PubMed  CAS  Google Scholar 

  • Lancaster CR (2007) Structures of reaction centers in anoxygenic bacteria. In: Renger G (ed) Primary processes of photosynthesis: basic principles and apparatus, vol II: Reaction centers/photosystems. Electron transport chains, photophosphorylation and evolution. Royal Society for Chemistry, Cambridge, pp 5–57

    Google Scholar 

  • Lane N (2003) Oxygen – The molecule that made the world. Oxford University Press, Oxford

    Google Scholar 

  • Larkum AWD (2007) The evolution of photosynthesis. In: Renger G (ed) Primary processes of photosynthesis: basic principles and apparatus, vol II: Reaction centers/photosystems. Electron transport chains, photophosphorylation and evolution. Royal Society for Chemistry, Cambridge (in press)

  • Loll B, Kern J, Saenger W, Zouni A, Biesiadka J (2005) Towards complete cofactor arrangement in the 3.0 Å resolution structure of photosystem II. Nature 438:1040–1044

    Article  PubMed  CAS  Google Scholar 

  • Lubitz W, Isaacson RA, Okamura MY, Abresch EC, Plato M, Feher G (1989) ENDOR studies of the intermediate electron acceptor radical anion I−• in photosystem II reaction centers. Biochim Biophys Acta 977:227–232

    Article  PubMed  CAS  Google Scholar 

  • MacMillan F, Lendzian F, Renger G, Lubitz W (1995) EPR and ENDOR investigation of the primary electron acceptor radical anion QA .− in iron-depleted photosystem II membrane fragments. Biochemistry 34:8144–8156

    Article  PubMed  CAS  Google Scholar 

  • Marcus RA, Sutin N (1985) Electron transfers in chemistry and biology. Biochim Biophys Acta 811:265–322

    CAS  Google Scholar 

  • McEvoy JP, Brudvig GW (2006) Water-splitting chemistry of Photosystem II. Chem Rev 106:4455–4483

    Article  PubMed  CAS  Google Scholar 

  • Merry SAP, Nixon PJ, Barter LMC, Schilstra M, Porter G, Barber J, Durrant JR, Klug DR (1998) Modulation of quantum yield of primary radical pair formation in photosystem II by site-directed mutagenesis affecting radical cations and anions. Biochemistry 37:17439–17447

    Article  PubMed  CAS  Google Scholar 

  • Messinger J (2000) Towards understanding the chemistry of photosynthetic oxygen evolution: dynamic structural changes, redox states and substrate water binding of the Mn cluster in photosystem II. Biochim Biophys Acta 1459:481–488

    Article  PubMed  CAS  Google Scholar 

  • Messinger J, Renger G (2007) Photosynthetic water splitting. In: Renger G (eds) Primary processes of photosynthesis: basic principles and apparatus, vol II: Reaction centers/photosystems. Electron Transport Chains, Photophosphorylation and Evolution Royal Society Chemistry, Cambridge, pp 295–352

    Google Scholar 

  • Messinger J, Seaton G, Wydrzynski T, Wacker U, Renger G (1997) S−3 state of the water oxidase in photosystem II. Biochemistry 36:6862–6873

    Article  PubMed  CAS  Google Scholar 

  • Messinger J, Robblee JH, Bergmann U, Fernandez C, Glatzel P, Isgandarova S, Hanssum B, Renger G, Cramer SP, Sauer K, Yachandra VK (2001) Manganese oxidation states in photosystem II. In: Proceedings of the 12th international conference on photosynthesis. CSIRO Publishing, Colingwood, S10

  • Metz JG, Nixon PJ, Rögner M, Brudvig GW, Diner BA (1989) Directed alteration of the D1 polypeptide of Photosystem-II – evidence that tyrosine-161 is the redox component, Z, connecting the oxygen-evolving complex to the primary electron-donor, P680. Biochemistry 28:6960–6969

    Article  PubMed  CAS  Google Scholar 

  • Meyer TJ, Hang M, Huynh V, Thorp HH (2007) The role of proton coupled electron transfer (PCET) in water oxidation by Photosystem II. Wiring for protons. Angew Chem Int Ed (in press)

  • Moënne-Loccoz R, Robert B, Lutz M (1989) A resonance Raman characterization of the primary electron acceptor in photosystem II. Biochemistry 28:3641–3645

    Article  Google Scholar 

  • Morris EP, Hankamer B, Zheleva D, Friso G, Barber J (1997) The three-dimensional structure of a photosystem II core complex determined by electron crystallography. Structure 5:837–849

    Google Scholar 

  • Moser CC, Page CC, Dutton PL (2005) Tunneling in PSII. Photochem Photobiol Sci 4:933–939

    Article  PubMed  CAS  Google Scholar 

  • Müller MG, Hucke M, Reus M, Holzwarth AR (1996) Primary processes and structure of the photosystem II reaction center. 4. Low-intensity femtosecond transient absorption spectra of D1-D2-cyt-b559 reaction center. J Phys Chem 100:9527–9536

    Article  Google Scholar 

  • Nabedryk E, Andrianambinintsoa S, Berger G, Leonhard M, Mäntele W, Breton J (1990) Characterization of bonding interactions of the intermediary electron acceptor in the reaction center of photosystem II by FTIR spectroscopy. Biochim Biophys Acta 1016:49–54

    Article  CAS  Google Scholar 

  • Nabedryk E, Paddock ML, Okamura MY, Breton J (2005) An isotope-edited FTIR investigation of the role of Ser-L223 in binding quinone (QB) and semiquinone (QB ) in the reaction center from Rhodobacter sphaeroides. Biochemistry 44:14519–14527

    Article  PubMed  CAS  Google Scholar 

  • Nakazato K, Toyoshima C, Enami I, Inoue Y (1996) Two-dimensional crystallization and cryo-electron microscopy of Photosystem II. J Mol Biol 257:225–232

    Article  PubMed  CAS  Google Scholar 

  • Narita K, Kuwabara T, Sone K, Shimizu K, Yagi M (2006) Characterization and activity analysis of catalytic water oxidation induced by hybridization of [(OH2)(terpy)Mn(μ-O)2Mn(terpy)(OH2)]3+ and clay compounds. J Phys Chem B 110:23107–23114

    Article  PubMed  CAS  Google Scholar 

  • Nield J, Orlova EV, Morris EP, Gowen B, van Heel M, Barber J (2000) 3D map of the plant photosystem II supercomplex obtained by cryoelectron microscopy and single particle analysis. Nat Struct Biol 7:44–47

    Article  PubMed  CAS  Google Scholar 

  • Nikolaev GM, Knox PP, Kononenko AA, Grishanova NP, Rubin AB (1980) Photo-induced electron transport and water state in Rhodospirillum rubrum chromatophores. Biochim Biophys Acta 590:194–201

    Article  PubMed  CAS  Google Scholar 

  • Oettmeier W (1992) Herbicides of photosystem II. In: Barber J (ed) The photosystems: structure, function and molecular biology. Elsevier, Amsterdam, pp 349–408

    Google Scholar 

  • Oettmeier W (1999) Herbicide resistance and supersensitivity in photosystem II. Cell Mol Life Sci 55:1255–1277

    Article  PubMed  CAS  Google Scholar 

  • Paddock ML, Feher G, Okamura MY (1995) Pathway of proton transfer in bacterial reaction centers: further investigations on the role of Ser-L223 studied by site-directed mutagenesis. Biochemistry 34:15742–15750

    Article  PubMed  CAS  Google Scholar 

  • Page CC, Moser CC, Chen X, Dutton PL (1999) Natural engineering principles of electron tunnelling in biological oxidation-reduction. Nature 402:47–52

    Article  PubMed  CAS  Google Scholar 

  • Parson WW (2007) Patterns of reaction centers in anoxygenic photosynthetic bacteria. In: Renger G (ed) Primary processes of photosynthesis: Basic principles and apparatus. Royal Society for Chemistry, Cambridge (in press)

  • Pecoraro VL, Baldwin MJ, Caudle MT, Hsieh W-Y, Law NA (1998) A proposal for water oxidation in photosystem II. Pure Appl Chem 70:925–929

    Article  CAS  Google Scholar 

  • Petrouleas V, Crofts AR (2005) The iron-quinone acceptor complex. In: Wydrzynski T, Satoh K (eds) Photosystem II: The light driven water:plastoquinone oxidoreductase. Advances in photosynthesis and respiration, vol 22. Springer, Dordrecht, pp 177–206

    Google Scholar 

  • Petrouleas V, Diner BA (1986) Identification of Q400, a high-potential electron-acceptor of photosystem-II, with the iron of the quinone-iron acceptor complex. Biochim Biophys Acta 849:264–275

    Article  CAS  Google Scholar 

  • Petrouleas V, Deligiannakis Y, Diner BA (1994) Binding of carboxylate anions at the non-heme Fe(II) of PS II. II. Competition with bicarbonate and effects on the QA/QB electron transfer rate. Biochim Biophys Acta 1188:271–277

    Article  Google Scholar 

  • Rappaport F, Lavergne J (2001) Coupling of electron and proton transfer in the photosynthetic water oxidase Biochim Biophys Acta 1503:246–259

    Article  PubMed  CAS  Google Scholar 

  • Rappaport F, Blanchard-Desce M, Lavergne J (1994) Kinetics of the electron transfer and electrochromic change during the redox transitions of the photosynthetic oxygen-evolving complex. Biochim Biophys Acta 1184:178–192

    Article  CAS  Google Scholar 

  • Razeghifard MR, Klughammer C, Pace RJ (1997) Electron paramagnetic resonance kinetic studies of the S states in spinach thylakoids. Biochemistry 36:86–92

    Article  PubMed  CAS  Google Scholar 

  • Raszewski G, Saenger W, Renger T (2005) Theory of optical spectra of photosystem II reaction centers: location of the triplet state and the identity of the primary electron donor. Biophys J 88:986–998

    Article  PubMed  CAS  Google Scholar 

  • Reifarth F, Renger G (1998) Indirect evidence for structural changes coupled with QB -. formation in Photosystem II. FEBS Lett 428:123–126

    Article  PubMed  CAS  Google Scholar 

  • Remy A, Gerwert K (2003) Coupling of light-induced electron transfer to proton uptake in photosynthesis. Nat Struct Biol 10:637–644

    Article  PubMed  CAS  Google Scholar 

  • Renger G (1976) Studies on the structural and functional organization of system II of photosynthesis. The use of trypsin as a structurally selective inhibitor at the outer surface of the thylakoid membrane. Biochim Biophys Acta 440:287–300

    Article  PubMed  Google Scholar 

  • Renger G (1978) Theoretical studies about the functional and structural organization of the photosynthetic oxygen evolution. In: Metzner H (ed) Photosynthetic oxygen evolution. Academic Press, London, pp 229–248

    Google Scholar 

  • Renger G (1983) Biological energy conservation. In: Hoppe W, Lohmann W, Markl H, Ziegler H (eds) Biophysics. Springer, Berlin, pp 347–371

    Google Scholar 

  • Renger G (1987) Mechanistic aspects of photosynthetic water cleavage. Photosynthetica 21:203–224

    CAS  Google Scholar 

  • Renger G (1993) Water cleavage by solar-radiation – an inspiring challenge of photosynthesis research. Photosynth Res 38:229–247

    Article  CAS  Google Scholar 

  • Renger G (1999) Studies on structure and mechanism of photosynthetic water oxidation. In: Peschek GA, Löffelhardt W, Schmetter G (eds) The phototrophic prokaryotes. Plenum Publishers, New York, pp 35–50

    Google Scholar 

  • Renger G (2001) Photosynthetic water oxidation to molecular oxygen: apparatus and mechanism. Biochim Biophys Acta 1503:210–228

    Article  PubMed  CAS  Google Scholar 

  • Renger G (2004) Coupling of electron and proton transfer in oxidative water cleavage in photosynthesis. Biochim Biophys Acta 1655:195–204

    Article  PubMed  CAS  Google Scholar 

  • Renger G (2005) Mechanistic considerations on oxidative water cleavage in oxygenic photosynthesis. In: van der Est A, Bruce D (eds) Photosynthesis: fundamental aspects to global perspectives, vol 1. ACG Publishing, Lawrence, pp 390–391

    Google Scholar 

  • Renger G (2007a) Primary processes of photosynthesis: basic principles and apparatus, Volume II: Reaction centers/photosystems, Electron transport chains, photophosphorylation and evolution. Royal Society of Chemistry, Cambridge (in press)

  • Renger G (2007b) Oxidative photosynthetic water splitting: energetics, kinetics and mechanism. Photosynth Res (in press)

  • Renger G, Holzwarth AR (2005) Primary electron transfer. In: Wydrzynski T, Satoh K (eds) Photosystem II: The light driven water:plastoquinone oxidoreductase. Advances in photosynthesis and respiration, vol 22. Springer, Dordrecht, pp 139–175

    Google Scholar 

  • Renger G, Kühn P (2007) Light induced oxidative water splitting in photosynthesis. Biochim Biophys Acta (in press). DOI 10.1016/j.bbabio.2006.12.004

  • Renger G, Weiss W (1986) Studies on the nature of the water-oxidizing enzyme. 3. Spectral characterization of the intermediary redox states in the water-oxidizing enzyme System-Y. Biochim Biophys Acta 850:184–196

    Article  CAS  Google Scholar 

  • Renger G, Wolff C (1976) Existence of a high photochemical turnover rate at reaction centers of system-2 in tris-washed chloroplasts. Biochim Biophys Acta 423:610–614

    Article  PubMed  CAS  Google Scholar 

  • Renger G, Wacker U, Völker M (1987) Studies on the protolytic reactions coupled with water cleavage in photosystem II membrane-fragments from spinach. Photosynth Res 13:167–184

    Article  CAS  Google Scholar 

  • Renger G, Eckert HJ, Völker M (1989) Studies on the electron transfer from Tyr-161 of polypeptide D-1 to P680+ in PS II membrane fragments from spinach. Photosynth Res 22:247–256

    Article  CAS  Google Scholar 

  • Renger G, Gleiter HM, Haag E, Reifarth F (1993) Photosystem II: Thermodynamics and kinetics of electron-transport from QA to QB(QB ) and deleterious effects of copper(II). Z Naturforsch C 48:234–240

    CAS  Google Scholar 

  • Renger G, Kurreck J, Reifarth F, Haag E, Bergmann A, Parak J, Garbers A, MacMillan F, Lendzian F, Lubitz W (1997) The non heme iron centre of photosystem II and modulatory effects of exogenous copper(II). In: Trautwein A (ed) Bioinorganic chemistry. VCH Publishers, pp 260–277

  • Renger G, Christen G, Karge M, Eckert H-J, Irrgang K-D (1998) Application of the Marcus theory for analysis of the temperature dependence of the reactions leading to photosynthetic water oxidation – results and implications. Bioinorg Chem 3:360–366

    CAS  Google Scholar 

  • Rhee KH (2001) Photosystem II: the solid structural era. Annu Rev Biophys Biomol Struct 30:307–328

    Article  PubMed  CAS  Google Scholar 

  • Rhee KH, Morris EP, Zheleva D, Hankamer B, Kühlbrandt W, Barber J (1997) Two-dimensional structure of plant photosystem II at 8-Å resolution. Nature 389:522–526

    Article  CAS  Google Scholar 

  • Rhee KH, Morris EP, Barber J, Kühlbrandt W (1998) Three-dimensional structure of the plant photosystem II reaction centre at 8 Å resolution. Nature 396:283–286

    Article  PubMed  CAS  Google Scholar 

  • Robblee JH, Cinco RM, Yachandra VK (2001) X-ray spectroscopy-based structure of the Mn cluster and mechanism of photosynthetic oxygen evolution. Biochim Biophys Acta 1503:7–23

    Article  PubMed  CAS  Google Scholar 

  • Robinson HH, Crofts AR (1984) Kinetics of the oxidation-reduction reactions of the photosystem II acceptor complex and the pathway for deactivation. FEBS Lett 151:221–226

    Google Scholar 

  • Rögner M, Dekker JP, Boekema EJ, Witt HT (1987) Size, shape and mass of the oxygen-evolving photosystem II complex from the thermophilic cyanobacterium Synechococcus sp. FEBS Lett 219:207–211

    Article  Google Scholar 

  • Rosenberg C, Christian J, Bricker TM, Putnam-Evans C (1999) Site-directed mutagenesis of glutamate residues in the large extrinsic loop of the photosystem II protein CP 43 affects oxygen-evolving activity and PS II assembly. Biochemistry 38:15994–16000

    Article  PubMed  CAS  Google Scholar 

  • Santini C, Tidu V, Tognon G, Ghiretti Magaldi A, Bassi R (1994) Three-dimensional structure of the higher-plant photosystem II reaction centre and evidence for its dimeric organization in vivo. Eur J Biochem 221:307–315

    Article  PubMed  CAS  Google Scholar 

  • Shinkarev VP (2006) Ubiquinone (coenzyme Q10) binding sites: low dielectric constant of the gate prevents the escape of the semiquinone. FEBS Lett 580:2534–2539

    Article  PubMed  CAS  Google Scholar 

  • Sicora CI., Appleton SE, Brown CM, Chung J, Chandler J, Cockshutt AM, Vass I, Campbell DA (2006) Cyanobacterial psbA families in Anabaena and Synechocystis encode trace, constitutive and UVB-induced D1 isoforms. Biochim Biophys Acta 1757:47–56

    Article  PubMed  CAS  Google Scholar 

  • Siegbahn PEM (2000) Theoretical models for the oxygen radical mechanism of water oxidation and the water oxidizing complex of photosystem II. Inoorg Chem 39:2923–2935

    Article  CAS  Google Scholar 

  • Siegbahn PEM (2006) O–O bond formation in the S4 state of the oxygen-evolving complex in photosystem. Chem – A Eur J 12:9217–9227

    Article  CAS  Google Scholar 

  • Sioros G, Koulougliotis D, Karapanagos G, Petrouleas V (2007) The S1YZ metalloradical EPR signal of photosystem II contains two distinct components that advance respectively to the multiline and g = 4.1 conformations of S2. Biochemistry 46:210–217

    Article  PubMed  CAS  Google Scholar 

  • Soper JD, Kryatov SV, Rybak-Akimova EV, Nocera DG (2007) Proton-directed redox control of O–O bond activation by heme hydroperoxidase models. J Am Chem Soc 129:5069–5075

    Article  PubMed  CAS  Google Scholar 

  • Steffen R, Kelly AA, Huyer J, Doermann P, Renger G (2005) Investigations on the reaction pattern of photosystem II in leaves from Arabidopsis thaliana wild type plants and mutants with genetically modified lipid content. Biochemistry 44:3134–3142

    Article  PubMed  CAS  Google Scholar 

  • Strasser RJ, Sironval C (1972) Induction of photosystem II activity in flashed leaves. FEBS Lett 28:56–60

    Article  CAS  Google Scholar 

  • Strickler MA, Walker LM, Hillier W, Debus RJ (2005) Evidence from biosynthetically incorporated strontium and FTIR difference spectroscopy that the C-terminus of the D1 polypeptide of photosystem II does not ligate calcium. Biochemistry 44:8571–8577

    Article  PubMed  CAS  Google Scholar 

  • Suzuki H, Nagasaka M, Sugiura M, Noguchi T (2005) Fourier transform infrared spectrum of the secondary quinone electron acceptor Q(B) in photosystem II. Biochemistry 44:11323–11328

    Article  PubMed  CAS  Google Scholar 

  • Suzuki H, Taguchi Y, Sugiura M, Boussac A, Noguchi T (2006) Structural perturbation of the carboxylate ligands to the manganese cluster upon Ca2+/Sr2+ exchange in the S-state cycle of photosynthetic oxygen evolution as studied by flash-induced FTIR difference spectroscopy. Biochemistry 45:13454–13464

    Article  PubMed  CAS  Google Scholar 

  • Tandori J, Sebban P, Michel H, Baciou L (1999) In Rhodobacter sphaeroides reaction centers, mutation of proline L209 to aromatic residues in the vicinity of a water channel alters the dynamic coupling between electron and proton transfer processes. Biochemistry 38:13179–13187

    Article  PubMed  CAS  Google Scholar 

  • Tommos C, Babcock GT (2000) Proton and hydrogen currents in photosynthetic water oxidation. Biochim Biophys Acta 1458:199–219

    Article  PubMed  CAS  Google Scholar 

  • Tsiotis G, McDermott G, Ghanotakis D (1996) Progress towards structural elucidation of photosystem II. Photosynth Res 50:93–101

    Article  CAS  Google Scholar 

  • van Rensen JJS, Xu CH, Govindjee (1999) Role of bicarbonate in photosystem II, the water-plastoquinone oxido-reductase of plant photosynthesis. Physiol Plant 105:585–592

    Article  Google Scholar 

  • Vass I, Aro E (2007) Photoinhibition of photosynthetic electron transport. In: Renger G (ed) Primary processes of photosynthesis: basic principles and apparatus. Royal Society for Chemistry, Cambridge (in press)

  • Vermaas W, Charite J, Shen G (1990) QA binding to D2 contributes to the functional and structural integrity of photosystem II. Z Naturforsch C 45:359–365

    CAS  Google Scholar 

  • Vrettos JS, Limburg J, Brudvig GW (2001) Mechanism of photosynthetic water oxidation: combining biophysical studies of photosystem II with inorganic model chemistry. Biochim Biophys Acta 1503:229–245

    Article  PubMed  CAS  Google Scholar 

  • Weiss W, Renger G (1984) UV-spectral characterization in tris-washed chloroplasts of the redox component D1 which functionally connects the reaction center with the water-oxidizing enzyme system Y in photosynthesis. FEBS Lett 169:219–223

    Article  CAS  Google Scholar 

  • Weng TC, Hsieh WY, Uffelman ES, Gordon-Wylie SW, Collins TJ, Pecoraro VL, Penner-Hahn JE (2004) XANES evidence against a manganyl species in the S3 state of the oxygen-evolving complex. J Am Chem Soc 126:8070–8071

    Article  PubMed  CAS  Google Scholar 

  • Wraight CA (1985) Modulation of herbicide-binding by the redox state of Q400, an endogenous component of photosystem II. Biochim Biophys Acta 809:320–330

    Article  CAS  Google Scholar 

  • Wydrzynski T, Satoh K (eds) (2005) Photosystem II: The light-driven water:plastoquinone oxidoreductase. Advances in photosynthesis and respiration, vol 22. Springer, Dordrecht

  • Xiong J, Hutchison RS, Sayre RT, Govindjee (1997) Modification of the photosystem II acceptor side function in a D1 mutant (arginine-269-glycine) of Chlamydomonas reinhardti. Biochim Biophys Acta 1322:60–76

    Article  PubMed  CAS  Google Scholar 

  • Xiong J, Subramaniam S, Govindjee (1998) A knowledge-based three dimensional model of the photosystem II reaction center of Chlamydomonas reinhardti. Photosynth Res 56:229–254

    Article  CAS  Google Scholar 

  • Yachandra V (2005) The catalytic manganese cluster: organization of the metal ions. In: Wydrzynski T, Satoh K (eds) Photosystem II: The light driven water:plastoquinone oxidoreductase. Advances in photosynthesis and respiration, vol 22. Springer, Dordrecht, pp 235–260

    Google Scholar 

  • Yachandra VK, Sauer K, Klein MP (1996) Manganese cluster in photosynthesis: where plants oxidize water to dioxygen. Chem Rev 96:2927–2950

    Article  PubMed  CAS  Google Scholar 

  • Yakushevska AE, Keegstra W, Boekema EJ, Dekker JP, Andersson J, Jansson S, Ruban AV, Horton P (2003) The structure of photosystem II in Arabidopsis: localization of the CP26 and CP29 antenna complexes. Biochemistry 42:608–613

    Article  PubMed  CAS  Google Scholar 

  • Yano J, Kern J, Irrgang KD, Latimer MJ, Bergmann U, Glatzel P, Pushkar Y, Biesiadka J, Loll B, Sauer K, Messinger J, Zouni A, Yachandra VK (2005a) X-ray damage to the Mn4Ca complex in single crystals of photosystem II: a case study for metalloprotein crystallography. Proc Natl Acad Sci USA 102:12047–12052

    Article  PubMed  CAS  Google Scholar 

  • Yano J, Pushkar Y, Glatzel P, Lewis A, Sauer K, Messinger J, Bergmann U, Yachandra V (2005b) High-resolution Mn EXAFS of the oxygen-evolving complex in photosystem II: Structural implications for the Mn4Ca cluster. J Am Chem Soc 127:14974–14975

    Article  PubMed  CAS  Google Scholar 

  • Yano J, Kern J, Sauer K, Latimer MJ, Pushkar Y, Biesiadka J, Loll B, Saenger W, Messinger J, Zouni A, Yachandra VK (2006) Where water is oxidized to dioxygen: structure of the photosynthetic Mn4Ca cluster. Science 314:821–825

    Article  PubMed  CAS  Google Scholar 

  • Zaks A, Klibanov AM (1984) Enzymatic catalysis in organic media at 100 degrees C. Science 224:1249–1251

    Article  PubMed  CAS  Google Scholar 

  • Zheng J, Wang D, Thiel W, Shaik S (2006) QM/MM study of mechanisms for compound I formation in the catalytic cycle of cytochrome P450cam. J Am Chem Soc 128:13204–13215

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann K, Heck M, Frank J, Kern J, Vass I, Zouni A (2006) Herbicide binding and thermal stability of photosystem II isolated from Thermosynechococcus elongatus. Biochim Biophys Acta 1757:106–114

    Article  PubMed  CAS  Google Scholar 

  • Zouni A, Witt HT, Kern J, Fromme P, Krauss N, Saenger W, Orth P (2001) Crystal structure of photosystem II from Synechococcus elongatus at 3.8 Å resolution. Nature 409:739–743

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The authors would like to thank A. Zouni, B. Loll, J. Biesiadka and W. Saenger for helpful discussions regarding the PSII structure, S. Renger and P. Kühn for preparing the electronic versions of Fig. 2 and Figs. 4 and 7, respectively. The support by DFG-Sonderforschungsbereich 429, TP A1 (GR) and 498, TP C7 (JK) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jan Kern or Gernot Renger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kern, J., Renger, G. Photosystem II: Structure and mechanism of the water:plastoquinone oxidoreductase. Photosynth Res 94, 183–202 (2007). https://doi.org/10.1007/s11120-007-9201-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-007-9201-1

Keywords

Navigation