Skip to main content
Log in

The role of plant mitochondria in the biosynthesis of coenzymes

  • Research Article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

This last decade, many efforts were undertaken to understand how coenzymes, including vitamins, are synthesized in plants. Surprisingly, these metabolic pathways were often “quartered” between different compartments of the plant cell. Among these compartments, mitochondria often appear to have a key role, catalyzing one or several steps in these pathways. In the present review we will illustrate these new and important biosynthetic functions found in plant mitochondria by describing the most recent findings about the synthesis of two vitamins (folate and biotin) and one non-vitamin coenzyme (lipoate). The complexity of these metabolic routes raise intriguing questions, such as how the intermediate metabolites and the end-product coenzymes are exchanged between the various cellular territories, or what are the physiological reasons, if any, for such compartmentalization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ADC:

Aminodeoxychorismate

Ado· :

5′-deoxyadenosyl radical

AdoMet:

S-adenosylmethionine

Adx1:

Adrenodoxin-like protein

AdxR:

Adrenodoxin reductase

BCKDH:

Branched-chain α-ketoacid dehydrogenase

DAPA:

7,8-diamino pelargonic acid

DHFR:

Dihydrofolate reductase

E2:

Dihydrolipoamide acyltransferase subunits

DHFS:

Dihydrofolate synthetase

DHPS:

Dihydropteroate synthase

DTB:

Dethiobiotin

FAS:

Fatty acid synthase

FPGS:

Folylpolyglutamate synthase

GDC:

Glycine decarboxylase

HPPK:

Hydroxymethyldihydropterin pyrophosphokinase

H4F:

Tetrahydrofolate

H4FGlun:

Tetrahydrofolate with n glutamates

H2F:

Dihydrofolate

KAPA:

7-keto-8-amino pelargonic acid

KAS:

β-ketoacyl acyl carrier protein synthase

KGDH:

α-ketoglutarate dehydrogenase

LCMS:

Liquid chromatography coupled to mass spectrometry

mtFAS:

mitochondrial fatty acid synthase

Nfs1:

Mitochondrial cystein desulfurase

pABA:

para-aminobenzoate

PDH:

Pyruvate dehydrogenase

PLP:

Pyridoxal 5′-phosphate

ACP:

Acyl carrier protein

SHMT:

Serine hydroxymethyl transferase

TS:

Thymidylate synthase

References

  • Ajjawi I, Tsegaye Y, Shintani D (2007) Determination of the genetic, molecular, and biochemical basis of the Arabidopsis thaliana thiamine auxotroph th1. Arch Biochem Biophys 449:107–114

    Article  CAS  Google Scholar 

  • Alban C, Job D, Douce R (2000) Biotin metabolism in plants. Annu Rev Plant Physiol Plant Mol Biol 51:17–47

    Article  PubMed  CAS  Google Scholar 

  • Appling DR (1991) Compartmentation of folate-mediated one-carbon metabolism in eukaryotes. Faseb J 5:2645–2651

    PubMed  CAS  Google Scholar 

  • Arnal N, Alban C, Quadrado M, Grandjean O, Mireau H (2006) The Arabidopsis Bio2 protein requires mitochondrial targeting for activity. Plant Mol Biol 62:471–479

    Article  PubMed  CAS  Google Scholar 

  • Baldet P, Alban C, Axiotis S, Douce R (1993a) Localization of free and bound biotin in cells from green pea leaves. Arch Biochem Biophys 303:67–73

    Article  PubMed  CAS  Google Scholar 

  • Baldet P, Alban C, Douce R (1997) Biotin synthesis in higher plants: purification of bio B gene product equivalent from Arabidopsis thaliana overexpressed in Escherichia coli and its subcellular localization in pea leaf cells. FEBS Lett 419:206–210

    Article  PubMed  CAS  Google Scholar 

  • Baldet P, Gerbling H, Axiotis S, Douce R (1993b) Biotin biosynthesis in higher plant cells. Identification of intermediates. Eur J Biochem 217:479–485

    Article  PubMed  CAS  Google Scholar 

  • Baldet P, Ruffet ML (1996) Biotin synthesis in higher plants: isolation of a cDNA encoding Arabidopsis thaliana bioB-gene product equivalent by functional complementation of a biotin auxotroph mutant bioB105 of Escherichia coli K12. CR Acad Sci Paris 309:99–106

    Google Scholar 

  • Balk J, Lobréaux S (2005) Biogenesis of iron-sulfur proteins in plants. Trends Plant Sci 10:324–331

    Article  PubMed  CAS  Google Scholar 

  • Bartoli CG, Pastori GM, Foyer CH (2000) Ascorbate biosynthesis in mitochondria is linked to the electron transport chain between complexes III and IV. Plant Physiol 123:335–344

    Article  PubMed  CAS  Google Scholar 

  • Bedhomme M, Hoffmann M, McCarthy EA, Gambonnet B, Moran RG, Rébeillé F, Ravanel S (2005) Folate metabolism in plants: an Arabidopsis homolog of the mammalian mitochondrial folate transporter mediates folate import into chloroplasts. J Biol Chem 280:34823–34831

    Article  PubMed  CAS  Google Scholar 

  • Boldt R, Zrenner R (2003) Purine and pyrimidine biosynthesis in higher plants. Physiol Plant 117:297–304

    Article  PubMed  CAS  Google Scholar 

  • Booker SJ (2004) Unraveling the pathway of lipoic acid biosynthesis. Chem Biol 11:10–12

    Article  PubMed  CAS  Google Scholar 

  • Bourguignon J, Rébeillé F, Douce R (1999) Serine and glycine metabolism in higher plants. In: Singh BK (eds) Plant amino acids. Marcel Dekker, Inc, New York, pp 111–146

    Google Scholar 

  • Brody S, Mikolajczyk S (1988) Neurospora mitochondria contain an acyl-carrier protein. Eur J Biochem 173:353–359

    Article  PubMed  CAS  Google Scholar 

  • Chabregas SM, Luche DD, van Sluys M-A, Menck CFM, Silva-Fihlo MC (2003) Differential usage of two in-frame translational start codons regulates subcellular localization of Arabidopsis thaliana THI1. J Cell Sci 116:285–291

    Article  PubMed  CAS  Google Scholar 

  • Choi-Rhee E, Cronan JE (2005) Biotin synthase is catalytic in vivo, but catalysis engenders destruction of the protein. Chem Biol 12:409–410

    Article  CAS  Google Scholar 

  • Chuman L, Brody S (1989) Acyl carrier protein is present in the mitochondria of plants and eucaryotic micro-organisms. Eur J Biochem 184:643–649

    Article  PubMed  CAS  Google Scholar 

  • Cicchillo RM, Booker SJ (2005). Mechanistic investigations of lipoic acid biosynthesis in Escherichia coli: both sulfur atoms in lipoic acid are contributed by the same lipoyl synthase polypeptide. J Am Chem Soc 127:2860–2861

    Article  PubMed  CAS  Google Scholar 

  • Cicchillo RM, Iwig DF, Jones AD, Nesbitt NM, Baleanu Gogonea C, Souder MG, Tu L, Booker SJ (2004b) Lipoyl synthase requires two equivalents of S-adenosyl-L-methionine to synthesize one equivalent of lipoic acid. Biochemistry 43:6378–6386

    Article  PubMed  CAS  Google Scholar 

  • Cicchillo RM, Lee KH, Baleanu-Gogonea C, Nesbitt NM, Krebs C, Booker SJ (2004a) Escherichia coli lipoyl synthase binds two distinct [4Fe-4S] clusters per polypeptide. Biochemistry 43:11770–11781

    Article  PubMed  CAS  Google Scholar 

  • Clifton R, Lister R, Parker KL, Sappl PG, Elhafez D, Millar AH, Day DA, Whelan J (2005) Stress-induced co-expression of alternative respiratory chain components in Arabidopsis thaliana. Plant Mol Biol 58:193–212

    Article  PubMed  CAS  Google Scholar 

  • Cohen-Addad C, Pares S, Sieker L, Neuburger M, Douce R (1995) The lipoamide arm in the glycine decarboxylase complex is not freely swinging. Nat Struct Biol 2:63–68

    Article  PubMed  CAS  Google Scholar 

  • Cossins EA (1984) Folates in biological materials. In: Blakley RL, Benkovic SJ (eds) Folates and pterins. Wiley (Intersciences), New York, pp 1–59

    Google Scholar 

  • Cossins EA (2000) The fascinating world of folate and one-carbon metabolism. Can J Bot 78:691–708

    Article  CAS  Google Scholar 

  • Coxon KM, Chakauya E, Ottenhof HH, Whitney HM, Blundell TL, Abell C, Smith AG (2005) Pantothenate biosynthesis in higher plants. Biochem Soc Trans 33:743–746

    Article  PubMed  CAS  Google Scholar 

  • Douce R (1985) Mitochondria in higher plants: structure, function and biogenesis. Academic Press, Inc., Orlando, FL

    Google Scholar 

  • Douce R, Bourguignon J, Neuburger M, Rébeillé F (2001) The glycine decarboxylase system: a fascinating complex. Trends Plant Sci 6:167–176

    Article  PubMed  CAS  Google Scholar 

  • Douce R, Neuburger M (1989) The uniqueness of plant mitochondria. Annu Rev Plant Physiol Plant Mol Biol 40:371–414

    Article  CAS  Google Scholar 

  • Faure M, Bourguignon J, Neuburger M, Macherel D, Sieker L, Ober R, Kahn R, Cohen-Addad C, Douce R. (2000) Interaction between the lipoamide-containing H-protein and the lipoamide dehydrogenase (L-protein) of the glycine decarboxylase multienzyme system 2. Crystal structures of H- and L-proteins. Eur J Biochem 267:2890–2898

    Article  PubMed  CAS  Google Scholar 

  • Focke M, Gieringer E, Schwan S, Jansch L, Binder S, Braun HP (2003) Fatty acid biosynthesis in mitochondria of grasses: malonyl-coenzyme A is generated by a mitochondrial-localized acetyl-coenzyme A carboxylase. Plant Physiol 133:875–884

    Article  PubMed  CAS  Google Scholar 

  • Fontecave M (2006) Iron-sulfur clusters: ever-expanding roles. Nat Chem Biol 2:171–174

    Article  PubMed  CAS  Google Scholar 

  • Golda A, Kozik A, Rapala-Kozik M (2005) Thiamine phosphate pyrophosphorylase: the key enzyme in thiamine biosynthesis in plants. FEBS J 272(S1) Abstract number J4–016B

  • Gueguen V, Macherel D, Jaquinod M, Douce R, Bourguignon J (2000) Fatty acid and lipoic acid biosynthesis in higher plant mitochondria. J Biol Chem 275:5016–5025

    Article  PubMed  CAS  Google Scholar 

  • Gueguen V, Macherel D, Neuburger M, Pierre CS, Jaquinod M, Gans P, Douce R, Bourguignon J (1999) Structural and functional characterization of H protein mutants of the glycine decarboxylase complex. J Biol Chem 274:26344–26352

    Article  PubMed  CAS  Google Scholar 

  • Guldener U, Koehler GJ, Haussmann C, Bacher A, Kricke J, Becher D, Hegemann JH (2004) Characterization of the Saccharomyces cerevisiae Fol1 protein: starvation for C1 carrier induces pseudohyphal growth. Mol Biol Cell 15:3811–3828

    Article  PubMed  Google Scholar 

  • Hanson AD, Roje S (2001) One-carbon metabolism in higher plants. Annu Rev Plant Physiol Plant Mol Biol 52:119–137

    Article  PubMed  CAS  Google Scholar 

  • Heazlewood JL, Howell KA, Whelan J, Millar AH (2003) Towards an analysis of the rice mitochondrial proteome. Plant Physiol 132:230–242

    Article  PubMed  CAS  Google Scholar 

  • Jabrin S, Ravanel S, Gambonnet B, Douce R, Rébeillé F (2003) One-carbon metabolism in plants. Regulation of tetrahydrofolate synthesis during germination and seedling development. Plant Physiol 131:1431–1439

    Article  PubMed  CAS  Google Scholar 

  • Jameson GN, Cosper MM, Hernández HL, Johnson MK, Huynh BH (2004) Role of the [2Fe-2S] cluster in recombinant Escherichia coli biotin synthase. Biochemistry 43:2022–2031

    Article  PubMed  CAS  Google Scholar 

  • Jarrett JT (2005) The novel structure and chemistry of iron-sulfur clusters in the adenosylmethionine-dependent radical enzyme biotin synthase. Arch Biochem Biophys 433:312–321

    Article  PubMed  CAS  Google Scholar 

  • Jordan SW, Cronan JE Jr (1997) A new metabolic link. The acyl carrier protein of lipid synthesis donates lipoic acid to the pyruvate dehydrogenase complex in Escherichia coli and mitochondria. J Biol Chem 272:17903–17906

    Article  PubMed  CAS  Google Scholar 

  • Klaus SMJ, Kunji ERS, Bozzo GG, Noiriel A, de la Garza RD, Basset GJC, Ravanel S, Rébeillé F, Gregory III JF, Hanson AD (2005) Higher plant plastids and cyanobacteria have folate carriers related to those of trypanosomatids. J Biol Chem 280:38457–38463

    Article  PubMed  CAS  Google Scholar 

  • Knighton DR, Kan CC, Howland E, Janson CA, Hostomska Z, Welch KM, Matthews DA (1994) Structure and kinetic channelling in bifunctional dihydrofolate reductase-thymidylate synthase. Nat Struct Biol 1:186–194

    Article  PubMed  CAS  Google Scholar 

  • Knowles JR (1989) The mechanism of biotin-dependent enzymes. Annu Rev Biochem 58:195–221

    Article  PubMed  CAS  Google Scholar 

  • Lernmark U, Gardestrom P (1994) Distribution of pyruvate dehydrogenase complex activities between chloroplasts and mitochondria from leaves of different species. Plant Physiol 106:1633–1638

    PubMed  CAS  Google Scholar 

  • Ludwig A, Stolz J, Sauer N (2000) Plant sucrose-H+ symporters mediate the transport of vitamin H. Plant J 24:503–509

    Article  PubMed  CAS  Google Scholar 

  • Lunn JE (2007) Compartmentation in plant metabolism. J Exp Bot 58:35–47

    Article  PubMed  CAS  Google Scholar 

  • Macherel D, Bourguignon J, Douce R (1992) Cloning of the gene (GDCH) encoding H-protein, a component of the glycine decarboxylase complex of Pea (Pisum sativum L.). Biochem J 286:627–630

    PubMed  CAS  Google Scholar 

  • Macherel D, Bourguignon J, Forest E, Faure M, Cohen-Addad C, Douce R (1996) Expression, lipoylation and structure determination of recombinant pea H-protein in Escherichia coli. Eur J Biochem 236:27–33

    Article  PubMed  CAS  Google Scholar 

  • McGuire JJ, Bertino JR (1981) Enzymatic synthesis and function of polyglutamate. Mol Cell Biochem 38:19–48

    Article  PubMed  CAS  Google Scholar 

  • Millar AH, Heazlewood JL, Kristensen BK, Braun HP, Moller IM (2005) The plant mitochondrial proteome. Trends Plant Sci 10:36–43

    Article  PubMed  CAS  Google Scholar 

  • Moller IM (2002) A new dawn for plant mitochondrial NAD(P)H dehydrogenases. Trends Plant Sci 7:235–237

    Article  PubMed  CAS  Google Scholar 

  • Mooney BP, Miernyk JA, Randall DD (2002) The complex fate of alpha-ketoacids. Annu Rev Plant Biol 53:357–375

    Article  PubMed  CAS  Google Scholar 

  • Mouillon JM, Ravanel S, Douce R, Rébeillé F (2002) Folate synthesis in higher-plant mitochondria: coupling between the dihydropterin pyrophosphokinase and the dihydropteroate synthase activities. Biochem J 363:313–319

    Article  PubMed  CAS  Google Scholar 

  • Neuburger M, Polidori AM, Pietre E, Faure M, Jourdain A, Bourguignon J, Pucci B, Douce R (2000) Interaction between the lipoamide-containing H-protein and the lipoamide dehydrogenase (L-protein) of the glycine decarboxylase multienzyme system. 1. Biochemical studies. Eur J Biochem 267:2882–2889

    Article  PubMed  CAS  Google Scholar 

  • Neuburger M, Rébeillé F, Jourdain A, Nakamura S, Douce R (1996) Mitochondria are a major site for folate and thymidylate synthesis in plants. J Biol Chem 271:9466–9472

    Article  PubMed  CAS  Google Scholar 

  • Noctor G, Queval G, Gakière B (2006) NAD(P) synthesis and pyridine nucleotide cycling in plants and their potential importance in stress conditions. J Exp Bot 57:1603–1620

    Article  PubMed  CAS  Google Scholar 

  • Ollagnier-de-Choudens S, Mulliez E, Fontecave M (2002) The PLP-dependent biotin synthase from Escherichia coli: mechanistic studies. FEBS lett 532:465–468

    Article  PubMed  CAS  Google Scholar 

  • Pares S, Cohen-Addad C, Sieker L, Neuburger M, Douce R (1994) X-ray structure determination at 2.6-A resolution of a lipoate-containing protein: the H-protein of the glycine decarboxylase complex from pea leaves. Proc Natl Acad Sci USA 91:4850–4853

    Article  PubMed  CAS  Google Scholar 

  • Patton DA, Schetter AL, Franzmann LH, Nelson K, Ward ER, Meinke DW (1998) An embryo-defective mutant of Arabidopsis disrupted in the final step of biotin synthesis. Plant Physiol 116:935–946

    Article  PubMed  CAS  Google Scholar 

  • Patton DA, Volrath S, Ward ER (1996) Complementation of an Arabidopsis thaliana biotin auxotroph with an Escherichia coli biotin biosynthetic gene. Mol Gen Genet 251:261–266

    PubMed  CAS  Google Scholar 

  • Picciocchi A, Douce R, Alban C (2001) Biochemical characterization of the Arabidopsis thaliana biotin synthase reaction. The importance of mitochondria in biotin synthesis. Plant Physiol 127:1224–1233

    Article  PubMed  CAS  Google Scholar 

  • Picciocchi A, Douce R, Alban C (2003) The plant biotin synthase reaction: identification and characterization of essential mitochondrial accessory protein components. J Biol Chem 278:24966–24975

    Article  PubMed  CAS  Google Scholar 

  • Pinon V, Ravanel S, Douce R, Alban C (2005) Biotin synthesis in plants. The first committed step of the pathway is catalyzed by a cytosolic 7-keto-8-aminopelargonic acid synthase. Plant Physiol 139:1666–1676

    Article  PubMed  CAS  Google Scholar 

  • Ravanel S, Cherest H, Jabrin S, Grunwald D, Surdin-Kerjan Y, Douce R, Rébeillé F (2001) Tetrahydrofolate biosynthesis in plants: molecular and functional characterization of dihydrofolate synthetase and three isoforms of folylpolyglutamate synthetase in Arabidopsis thaliana. Proc Natl Acad Sci USA 98:15360–15365

    Article  PubMed  CAS  Google Scholar 

  • Ravanel S, Douce R, Rébeillé F (2004) The uniqueness of tetrahydrofolate synthesis and one-carbon metabolism in plants. In: Day DA, Millar H, Whelan J (eds) Plant mitochondria from genome to function. Kluwer Academic Publishers, Great Britain, pp 277–292

    Google Scholar 

  • Rébeillé F, Douce R (1999) Folate synthesis and compartmentation in higher plants. In: Kruger NJ, Hill SA, Ratcliffe G (eds) Regulation of primary metabolic pathways in plants. Kluwer Academic Publishers, Netherlands, pp 53–99

    Google Scholar 

  • Rébeillé F, Macherel D, Mouillon JM, Garin J, Douce R (1997) Folate biosynthesis in higher plants: purification and molecular cloning of a bifunctional 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase/7,8-dihydropteroate synthase localized in mitochondria. Embo J 16:947–957

    Article  PubMed  Google Scholar 

  • Rébeillé F, Neuburger M, Douce R (1994) Interaction between glycine decarboxylase, serine hydroxymethyltransferase and tetrahydrofolate polyglutamates in pea leaf mitochondria. Biochem J 302:223–228

    PubMed  Google Scholar 

  • Rébeillé F, Ravanel S, Jabrin S, Douce R, Storozhenko S, Van Der Straeten D (2006) Folates in plants: biosynthesis, distribution, and enhancement. Physiol Plant 126:330–342

    Article  Google Scholar 

  • Rippert P, Scimemi C, Dubald M, Matringe M (2004) Engineering plant shikimate pathway for production of tocotrienol and improving herbicide resistance. Plant Physiol 134:92–100

    Article  PubMed  CAS  Google Scholar 

  • Sandoval FJ, Roje S (2005) An FMN hydrolase is fused to a riboflavin kinase homolog in plants. J Biol Chem 280: 38337–38345

    Article  PubMed  CAS  Google Scholar 

  • Schneider T, Dinkins R, Robinson K, Shellhammer J, Meinke DW (1989) An embryo-lethal mutant of Arabidopsis thaliana is a biotin auxotroph. Dev Biol 131:161–167

    Article  PubMed  CAS  Google Scholar 

  • Shellhammer J, Meinke D (1990) Arrested embryos from the bio1 auxotroph of Arabidopsis thaliana contain reduced levels of biotin. Plant Physiol 93:1162–1167

    Article  PubMed  CAS  Google Scholar 

  • Shintani DK, Ohlrogge JB (1994) The characterization of a mitochondrial acyl carrier protein isoform isolated from Arabidopsis thaliana. Plant Physiol 104:1221–1229

    Article  PubMed  CAS  Google Scholar 

  • Smith PM, Atkins CA (2002) Purine biosynthesis. Big in cell division, even bigger in nitrogen assimilation. Plant Physiol 128:793–802

    Article  PubMed  CAS  Google Scholar 

  • Streit WR, Entcheva P (2003) Biotin in microbes, the genes involved in its biosynthesis, its biochemical role and perspectives for biotechnological production. Appl Microbiol Biotechnol 61:21–31

    PubMed  CAS  Google Scholar 

  • Tambasco-Studart M, Titiz O, Raschle T, Forster G, Amrhein N, Fitzpatrick TB (2005) Vitamin B6 biosynthesis in higher plants. Proc Natl Acad Sci USA 102: 13687–13692

    Article  PubMed  CAS  Google Scholar 

  • Taylor NL, Heazlewood JL, Day DA, Millar AH (2004) Lipoic acid-dependent oxidative catabolism of alpha-keto acids in mitochondria provides evidence for branched-chain amino acid catabolism in Arabidopsis. Plant Physiol 134:838–848

    Article  PubMed  CAS  Google Scholar 

  • Thomas SG, Franklin-Tong VE (2004) Self-incompatibility triggers programmed cell death in Papaver pollen. Nature 429:305–309

    Article  PubMed  CAS  Google Scholar 

  • Tissot G, Douce R, Alban C (1997) Evidence for multiple forms of biotin holocarboxylase synthetase in pea (Pisum sativum) and in Arabidopsis thaliana: subcellular fractionation studies and isolation of a cDNA clone. Biochem J 323:179–188

    PubMed  CAS  Google Scholar 

  • Tissot G, Pépin R, Job D, Douce R, Alban C (1998) Purification and properties of the chloroplastic form of biotin holocarboxylase synthetase from Arabidopsis thaliana overexpressed in Escherichia coli. Eur J Biochem 258:586–596

    Article  PubMed  CAS  Google Scholar 

  • Ugulava NB, Sacanell CJ, Jarrett JT (2001) Spectroscopic changes during a single turnover of biotin synthase: destruction of a [2Fe-2S] cluster accompanies sulfur insertion. Biochemistry 40:8343–8351

    Article  PubMed  CAS  Google Scholar 

  • Vanlerberghe GC, McIntosh L (1997) Alternative oxidase: from gene to function. Annu Rev Plant Physiol Plant Mol Biol 48:703–734

    Article  PubMed  CAS  Google Scholar 

  • Wada H, Shintani D, Ohlrogge J (1997) Why do mitochondria synthesize fatty acids? Evidence for involvement in lipoic acid production. Proc Natl Acad Sci USA 94:1591–1596

    Article  PubMed  CAS  Google Scholar 

  • Wu HM, Cheun AY (2000) Programmed cell death in plant reproduction. Plant Mol Biol 44:267–281

    Article  PubMed  Google Scholar 

  • Yasuno R, von Wettstein Knowles P, Wada H (2004) Identification and molecular characterization of the beta-ketoacyl-[acyl carrier protein] synthase component of the Arabidopsis mitochondrial fatty acid synthase. J Biol Chem 279:8242–8251

    Article  PubMed  CAS  Google Scholar 

  • Yasuno R, Wada H (1998) Biosynthesis of lipoic acid in arabidopsis: cloning and characterization of the cDNA for lipoic acid synthase. Plant physiol 118:935–943

    Article  PubMed  CAS  Google Scholar 

  • Yasuno R, Wada H (2002) The biosynthetic pathway for lipoic acid is present in plastids and mitochondria in Arabidopsis thaliana. FEBS Lett 517:110–114

    Article  PubMed  CAS  Google Scholar 

  • Zempleni J (2005) Uptake, localization, and noncarboxylase roles of biotin. Annu Rev Nutr 25:175–196

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Joshi AK, Hofmann J, Schweizer E, Smith S (2005) Cloning, expression, and characterization of the human mitochondrial beta-ketoacyl synthase. Complementation of the yeast cem1 knock-out strain. J Biol Chem 280:12422–12429

    Article  PubMed  CAS  Google Scholar 

  • Zhao X, Miller JR, Jiang Y, Marletta MA, Cronan JE (2003) Assembly of the covalent linkage between lipoic acid and its cognate enzymes. Chem Biol 10:1293–1302

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I (RD) must say that the best year of my life was undoubtedly the year I spent at the Scripps Institution of Oceanography in Andy’s company. It was both a delight and a privilege.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrice Rébeillé.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rébeillé, F., Alban, C., Bourguignon, J. et al. The role of plant mitochondria in the biosynthesis of coenzymes. Photosynth Res 92, 149–162 (2007). https://doi.org/10.1007/s11120-007-9167-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-007-9167-z

Keywords

Navigation