Skip to main content
Log in

Current status of the role of Cl ion in the oxygen-evolving complex

  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

This minireview summarizes the current state of knowledge concerning the role of Cl in the oxygen-evolving complex (OEC) of photosystem II (PSII). The model that proposes that Cl is a Mn ligand is discussed in light of more recent work. Studies of Cl specificity, stoichiometry, kinetics, and retention by extrinsic polypeptides are discussed, as are the results that fail to detect Cl ligation to Mn and results that show a lack of a requirement for Cl in PSII-catalyzed H2O oxidation. Mutagenesis experiments in cyanobacteria and higher plants that produce evidence for a correlation between Cl retention and stable interactions among intrinsic and extrinsic polypeptides are summarized, and spectroscopic data on the interaction between PSII and Cl are discussed. Lastly, the question of the site of Cl action in PSII is discussed in connection with the current crystal structures of the enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

EGTA:

Ethylene glycol bis(2-aminoethyl ether)-N,N,N′N′-tetraacetic acid

EPR:

Electron paramagnetic resonance

ESEEM:

Electron spin-echo envelope modulation

EXAFS:

Extended X-ray absorption fine structure

FTIR:

Fourier transform infrared spectroscopy

OEC:

Oxygen-evolving complex

PS:

Photo system

PsbO:

33 kDa protein

PsbP:

23 kDa protein

PsbQ:

17 kDa protein

PsbV:

Cyt 550

PsbU:

12 kDa protein

NMR:

Nuclear magnetic resonance

XANES:

X-ray absorption near edge structure

References

  • Ananyev G, Nguyen T, Putnam-Evans C, Dismukes GC (2005) Mutagenesis of CP43-arginine-357 to serine reveals new evidence for (bi)carbonate functioning in the water oxidizing complex of Photosystem II. Photochem Photobiol Sci 4:991–998

    Article  CAS  PubMed  Google Scholar 

  • Andersson B, Critchley C, Ryrie IJ, Jansson C, Larsson C, Anderson JM (1984) Modification of the chloride requirement for photosynthetic O2 evolution: the role of the 23 kDa polypeptide. FEBS Lett 168:113–117

    Article  CAS  Google Scholar 

  • Baianu IC, Critchley C, Govindjee, Gutowsky HS (1984) NMR-study of chloride ion interactions with thylakoid membranes. Proc Nat Acad Sci USA 81:3713–3717

    Article  CAS  PubMed  Google Scholar 

  • Beck WF, de Paula JC, Brudvig GW (1986) Ammonia binds to the manganese site of the O2-evolving complex of photosystem II in the S2 state. J Am Chem Soc 108:4018–4022

    Article  CAS  Google Scholar 

  • Bricker TM (1992) Oxygen evolution in the absence of the 33-kilodalton manganese stabilizing protein. Biochemistry 31:4623–4628

    Article  CAS  PubMed  Google Scholar 

  • Bricker TM, Lowrance J, Sutton H, Frankel LK (2001) Alterations of the oxygen-evolving apparatus in a 448Arg → 448Ser mutant in the CP47 protein of photosystem II under normal and low chloride conditions. Biochemistry 40:11483–11489

    Article  CAS  PubMed  Google Scholar 

  • Bricker TM, Young A, Frankel LK, Putnam-Evans C (2002) Introduction of the 305Arg → 305Ser mutation in the large extrinsic loop E of the CP43 protein of Synechocystis sp. PCC 6803 leads to the loss of cytochrome c(550) binding to Photosystem II. Biochim Biophys Acta 1556:92–96

    Article  CAS  PubMed  Google Scholar 

  • Britt RD (1996) Oxygen evolution In: Ort DR, Yocum CF (eds) Oxygenic photosynthesis: the light reactions, Kluwer Academic Publishers, Dordrecht, pp 137–164

    Google Scholar 

  • Britt RD, Campbell KA, Peloquin JM, Gilchrist ML, Aznar CP, Dicus MM, Robblee J, Messinger J (2004) Recent pulsed EPR studies of the photosystem II oxygen-evolving complex: Implications as to water oxidation mechanism. Biochim Biophys Acta 1655:158–171

    Article  CAS  PubMed  Google Scholar 

  • Britt RD, Zimmermann J-L, Sauer K, Klein MP (1989) Ammonia binds to the catalytic Mn of the oxygen-evolving complex of photosystem II: evidence by electron spin-echo envelope modulation spectroscopy. J Am Chem Soc 111:3522–3532

    Article  CAS  Google Scholar 

  • Bryson DI, Doctor N, Johnson R, Baranov S, Haddy A (2005) Characteristics of iodide activation and inhibition of oxygen evolution by photosystem II. Biochemistry 44:7354–7360

    Article  CAS  PubMed  Google Scholar 

  • Clarke SM, Eaton-Rye JJ (1999) Mutation of Phe-363 in the photosystem II protein CP47 impairs photoautotrophic growth, alters the chloride requirement and prevents photosynthesis in the absence of either PSII-O or PSII-V in Synechocystis sp. PCC 6803. Biochemistry 38:2707–2715

    Article  CAS  PubMed  Google Scholar 

  • Clarke SM, Eaton-Rye JJ (2000) Amino acid deletions in loop C of the chlorophyll a-binding protein CP47 alter the chloride requirement and/or prevent the assembly of photosystem II. Plant Mol Biol 44:591–601

    Article  CAS  PubMed  Google Scholar 

  • Clemens KL, Force DA, Britt RD (2002) Acetate binding at the photosystem II oxygen evolving complex: an S2-state multiline signal ESEEM study. J Am Chem Soc 124:10921–10933

    Article  CAS  PubMed  Google Scholar 

  • Coleman WJ, Govindjee (1987) A model for the mechanism of chloride activation of oxygen evolution in photosystem II. Photosynth Res 13:199–223

    Article  CAS  Google Scholar 

  • Demmig B, Gimmler H (1983) Properties of the isolated intact chloroplast at cytoplasmic K+ concentrations. I. Light-induced cation uptake into intact chloroplasts is driven by an electrical potential difference. Plant Physiol 73:169–174

    CAS  PubMed  Google Scholar 

  • Eaton-Rye JJ, Putnam-Evans C (2005) The CP47 and CP43 core antenna components. In: Wydrzynski TJ, Satoh K (eds) Photosystem II: the light-driven water: plastoquinone oxidoreductase. Springer, Dordrecht, pp 45–70

    Google Scholar 

  • Eaton-Rye JJ, Vermaas WFJ (1991) Oligonucleotide-directed mutagenesis of psbB, the gene encoding CP47, employing a deletion mutant strain of the cyanobacterium Synechocystis sp. PCC 6803. Plant Mol Biol 17:1165–1177

    Article  CAS  PubMed  Google Scholar 

  • Ferreira KN, Iverson TM, Maghlaoui K, Barber J, Iwata S (2004) Architecture of the photosynthetic oxygen-evolving center. Science 303:1831–1838

    Article  CAS  PubMed  Google Scholar 

  • Force DE, Randall DW, Britt RD (1997) Proximity of acetate, manganese and exchangeable deuterons to tyrosine Y Z in acetate-inhibited photosystem II membranes: Implications for the direct involvement of Y Z in water splitting. Biochemistry 36:12062–12070

    Article  CAS  PubMed  Google Scholar 

  • Ghanotakis DF, O’Malley PJ, Babcock GT, Yocum CF (1983) Structure and inhibition of components on the oxidizing side of photosystem II. In: Inoue Y, Crofts AR, Govindjee, Murata N, Renger G, Satoh K (eds) The oxygen evolving system of photosynthesis. Academic Press, Tokyo, pp 91–101

    Google Scholar 

  • Gilchrist ML, Ball JA, Randall DW, Britt RD (1995) Proximity of the manganese cluster of photosystem II to the redox-active tyrosine YZ. Proc Natl Acad Sci USA 92:9545–9549

    Article  CAS  PubMed  Google Scholar 

  • Gleiter HM, Haag E, Shen JR, Eaton-Rye JJ, Inoue Y, Vermaas WFJ, Renger G (1994) Functional characterization of mutant strain of the cyanobacterium Synechocystis sp. PCC 6803 lacking short domains within the large, lumen-exposed loop of the chlorophyll protein CP47 in Photosystem II. Biochemistry 33:12063–12071

    Article  CAS  PubMed  Google Scholar 

  • Gorham PR, Clendenning KA (1952) Anionic stimulation of the Hill reaction in isolated chloroplasts. Arch Biochem Biophys 37:109–223

    Article  Google Scholar 

  • Haag E, Eaton-Rye JJ, Renger G, Vermaas WFJ (1993) Functionally important domains of the large hydrophilic loop of CP47 as probed by oligonucleotides-directed mutagenesis in Synechocystis sp. PCC 6803. Biochemistry 32:4444–4454

    Article  CAS  PubMed  Google Scholar 

  • Haddy A, Hatchell JA, Kimel RA, Thomas R (1999) Azide as a competitor of chloride in oxygen evolution by photosystem II. Biochemistry 38:6104–6110

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa K, Kimura Y, Ono T (2002) Chloride cofactor in the photosynthetic oxygen-evolving complex studied by Fourier transform infrared spectroscopy. Biochemistry 41:13839–13850

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa K, Kimura Y, Ono T (2004) Oxidation of the Mn cluster induces structural changes of NO 3 functionally bound to the Clsite in the oxygen-evolving complex of photosystem II. Biophs J 86:1042–1050

    CAS  Google Scholar 

  • Haumann M, Barra M, Loha P, Losher S, Krivanek R, Grundmeier A, Andreasson L-E, Dau H (2006) Bromide does not bind to the Mn4Ca complex in its S1 state in Cl-depleted and Br reconstituted oxygen-evolving photosystem II: evidence from X-ray absorption spectroscopy at the Br K-edge. Biochemistry 45:13101–13107

    Article  CAS  PubMed  Google Scholar 

  • Hind G, Natakani HY, Izawa S (1969) The role of Cl in photosynthesis. I. The Clrequirement of electron transport. Biochim Biophys Acta 172:277–289

    Article  CAS  PubMed  Google Scholar 

  • Homan PH (1988a) Structural effects of Cl and other anions on the water oxidizing complex of chloroplast photosystem II. Plant Physiol 88:194–199

    Article  Google Scholar 

  • Homann PH (1988b) The chloride and calcium requirements of photosynthetic water oxidation: Effects of pH. Biochim Biophys Acta 934:1–13

    Article  CAS  Google Scholar 

  • Homann PH (1988c) Chloride relations of photosystem-II membrane preparations depleted of, and resupplied with, their 17-kDa and 23-kDa extrinsic polypeptides. Photosynth Res 15:205–220

    Article  CAS  Google Scholar 

  • Homann PH (2002) Chloride and calcium in photosystem II: from effects to enigma. Photosynth Res 73:169–175

    Article  CAS  PubMed  Google Scholar 

  • Homann PH, Johnson JD, Pfister VR (1983) Interactions of protons with photosystem II. In: Inoue Y, Crofts AR, Govindjee, Murata N, Renger G, Satoh K (eds) The oxygen evolving system of photosynthesis. Academic Press, Tokyo, pp 283–292

    Google Scholar 

  • Hureau C, Blondin G, Charlot M-F, Philouze C, Nierlich M, Cezario M, Anxolabehere-Mallart E (2005) Synthesis, structure and characterization of new mononuclear Mn(II) complexes. Electrochemical conversion into new oxo-bridged Mn2(III,IV) complexes. Role of chloride ions. Inorg Chem 44:3669–3689

    Article  CAS  PubMed  Google Scholar 

  • Ifuku K, Sato F (2001) Importance of the N-terminal sequence of the extrinsic 23 kDa polypeptide in photosystem II in ion retention in oxygen evolution. Biochim Biophys Acta 1546:196–204

    CAS  PubMed  Google Scholar 

  • Izawa S, Heath RL, Hind G (1969) The role of Cl in photosynthesis. III. The effect of artificial electron donors upon electron transport. Biochim Biophys Acta 180:388–398

    Article  CAS  PubMed  Google Scholar 

  • Kashino Y, Lauber WM, Carroll JA, Wang Q, Whitmarsh J, Satoh K, Pakrasi HB (2002) Proteomic analysis of a highly active Photosystem II preparation from the cyanobacterium Synechocystis sp. PCC 6803 reveal the presence of novel polypeptides. Biochemistry 41:8004–8012

    Article  CAS  PubMed  Google Scholar 

  • Kelley PM, Izawa S (1978) The role of Cl in photosystem II. I. Effects of chloride ion on photosystem II electron transport and on hydroxylamine inhibition. Biochim Biophys Acta 502:198–210

    Article  CAS  PubMed  Google Scholar 

  • Kimura Y, Hasegawa K, Yamanari T, Ono T (2005) Studies on photosynthetic oxygen-evolving complex by means of Fourier transform infrared spectroscopy: calcium and chloride cofactors. Photosynth Res 84:245–250

    Article  CAS  PubMed  Google Scholar 

  • Knoepfle N, Bricker TM, Putnam-Evans C (1999) Site-directed mutagenesis of basic arginine residues 305 and 342 in the CP 43 protein of Photosystem II affects oxygen-evolving activity in Synechocystis 6803. Biochemistry 38:1582–1588

    Article  CAS  PubMed  Google Scholar 

  • Lindberg K, Andréasson L-E (1996) A one-site, two-state model for the binding of anions in photosystem II. Biochemistry 35:14259–14267

    Article  CAS  PubMed  Google Scholar 

  • Lindberg K, Vänngård T, Andréasson L-E (1993) Studies of the slowly exchanging chloride in photosystem II of higher plants. Photosynth Res 38:401–408

    Article  CAS  Google Scholar 

  • Lindberg K, Wydrzynski T, Vänngård T, Andréasson L-E (1990) Slow release of chloride from 36Cl-labeled photosystem II membranes. FEBS Lett 264:153–155

    Article  CAS  Google Scholar 

  • Loll B, Kern J, Saenger W, Zouni A, Biesiadka J (2005) Towards complete cofactor arrangement in the 3.0 Å resolution structure of Photosystem II. Nature 438:1040–1044

    Article  CAS  PubMed  Google Scholar 

  • McEvoy JP, Gascon JA, Batista VS, Brudvig GW (2005) The mechanism of water splitting. Photochem Photobiol Sci 4:940–949

    Article  CAS  PubMed  Google Scholar 

  • Miyao M, Murata N (1984) Role of the 33-kDa polypeptide in preserving Mn in the photosynthetic oxygen-evolving system and its replacement by chloride ions. FEBS Lett 170:350–354

    Article  CAS  Google Scholar 

  • Miyao M, Murata N (1985) The Cl effect on photosynthetic oxygen evolution – Interaction of Cl with 18-kDa, 24-kDa and 33-kDa proteins. FEBS Lett 180:303–308

    Article  CAS  Google Scholar 

  • Motoki A, Usui M, Shimazu T, Hirano M, Katoh S (2002) A domain of the manganese-stabilizing protein from Synechococcus elongatus involved in functional binding to photosystem II. J Biol Chem 277:14747–14756

    Article  CAS  PubMed  Google Scholar 

  • Nash D, Miyao M, Murata N (1985) Heat inactivation of oxygen evolution in photosystem II particles and its acceleration by chloride depletion and exogenous manganese. Biochim Biophys Acta 807:127–133

    Article  CAS  Google Scholar 

  • Olesen K, Andréasson L-E (2003) The function of the chloride ion in photosynthetic oxygen evolution. Biochemistry 42:2025–2035

    Article  CAS  PubMed  Google Scholar 

  • Ono T, Noguchi T, Inoue T, Kusunoki M, Yamaguchi H, Oyanagi H (1995) XANES spectroscopy for monitoring intermediate reaction states of Cl -depleted Mn cluster in photosynthetic water oxidation enzyme. J Amer Chem Soc 117:6386–6387

    Article  CAS  Google Scholar 

  • Ono T, Zimmermann JL, Inoue Y, Rutherford AW (1986) EPR evidence for a modified S-state transition in chloride-depleted photosystem II. Biochim Biophys Acta 851:193–201

    Article  CAS  Google Scholar 

  • Pecoraro VL, Baldwin MJ, Caudle MT, Hsieh WY, Law NA (1998) A proposal for water oxidation in photosystem II. Pure Appl Chem 70:925–929

    CAS  Google Scholar 

  • Penner-Hahn JE (1998) Structural characterization of the Mn site in the photosynthetic oxygen-evolving complex. Struct Bond 90:1–36

    CAS  Google Scholar 

  • Popelkova H, Betts SD, Lydakis-Simantiris N, Im MM, Swenson E, Yocum CF (2006) Mutagenesis of basic residues R151 and R161 in manganese-stabilizing protein of Photosystem II causes inefficient binding of chloride to the oxygen evolving complex. Biochemistry 45:3107–3115

    Article  CAS  PubMed  Google Scholar 

  • Putnam-Evans C, Bricker TM (1992) Site-directed mutagenesis of the Cpa-1 protein of Photosystem II: Alteration of the basic residue pair 384,385R to 384,385G leads to a defect associated with the oxygen-evolving complex. Biochemistry 31:11482–11488

    Article  CAS  PubMed  Google Scholar 

  • Putnam-Evans C, Bricker TM (1994) Site-directed mutagenesis of the CP47 protein of photosystem II: alteration of the basic residue 448R to 448G prevents the assembly of functional photosystem II centers under chloride-limiting conditions. Biochemistry 33:10770–10776

    Article  CAS  PubMed  Google Scholar 

  • Putnam-Evans C, Bricker TM (1997) Site-directed mutagenesis of the basic residues 321K to 321G in the CP 47 protein of photosystem II alters the chloride requirement for growth and oxygen-evolving activity in Synechocystis 6803. Plant Mol Biol 34:455–463

    Article  CAS  PubMed  Google Scholar 

  • Putnam-Evans C, Burnap R, Wu J, Whitmarsh J, Bricker TM (1996a) Site-directed mutagenesis of the CP 47 protein of Photosystem II: Alteration of conserved charged residues in the domain 364E-444R. Biochemistry 35:4046–4053

    Article  CAS  Google Scholar 

  • Putnam-Evans C, Wu JT, Bricker TM (1996b) Site-directed mutagenesis of the CP 47 protein of Photosystem II: Alteration of conserved charged residues which lie within lethal deletions of the large extrinsic loop E. Plant Mol Biol 32:1191–1195

    Article  CAS  Google Scholar 

  • Robblee JH, Cinco RM, Yachandra VK (2001) X-ray spectroscopy-based structure of the Mn cluster and mechanism of photosynthetic oxygen evolution. Biochim Biophys Acta 1503:7–23

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg C, Christian J, Bricker TM, Putnam-Evans C (1999) Site-directed mutagenesis of glutamate residues in the large extrinsic loop of the Photosystem II protein CP 43 affects oxygen-evolving activity and PSII assembly. Biochemistry 38:15994–16000

    Article  CAS  PubMed  Google Scholar 

  • Rutherford AW, Zimmermann J-L, Boussac A (1992) Oxygen evolution. In: Barber J (ed) The photosystems: structure, function, and molecular biology. Elsevier Science Publishers BV, Amsterdam, pp 179–229

    Google Scholar 

  • Sandusky PO, Selvius DeRoo CL, Hicks DB, Yocum CF, Ghanotakis DF, Babcock GT (1983) Electron transport activity and polypeptide composition in the isolated photosystem II complex. In: Inoue Y, Crofts AR, Govindjee, Murata N, Renger G, Satoh K (eds) The oxygen evolving system of photosynthesis. Academic Press, Tokyo, pp 189–199

    Google Scholar 

  • Sandusky PO, Yocum CF (1983) The mechanism of amine inhibition of the photosynthetic oxygen evolving complex: amines displace functional chloride from a ligand site on manganese. FEBS Lett 162:339–343

    Article  CAS  Google Scholar 

  • Sandusky PO, Yocum CF (1984) The chloride requirement for photosynthetic oxygen evolution; analysis of the effects of chloride and other anions on amine inhibition of the oxygen-evolving complex. Biochim Biophys Acta 766:603–611

    Article  CAS  Google Scholar 

  • Sandusky PO, Yocum CF (1986) The chloride requirement for photosynthetic oxygen evolution: factors affecting nucleophilic displacement of chloride from the oxygen-evolving complex. Biochim Biophys Acta 849:85–93

    Article  CAS  Google Scholar 

  • Seidler A (1996) The extrinsic polypeptides of photosystem II. Biochim Biophys Acta 127:35–60

    Google Scholar 

  • Shuldiner S, Avron M (1971) Anion permeability of chloroplasts. Eur J Biochem 19:227–234

    Article  Google Scholar 

  • Szalai VA, Brudvig GW (1996) Formation and decay of the S3 EPR species in acetate-inhibited photosystem II. Biochemistry 35:1946–1953

    Article  CAS  PubMed  Google Scholar 

  • Tang XS, Randall DW, Force DA, Diner BA, Britt RD (1996) Manganese-tyrosine interaction in the photosystem II oxygen-evolving complex. J Am Chem Soc 118:7638–7639

    Article  CAS  Google Scholar 

  • Theg SM, Homann PH (1982) Light-, pH-, and uncoupler-dependent association of chloride with chloroplast thylakoids. Biochim Biophys Acta 679:221–234

    Article  CAS  Google Scholar 

  • Theg SM, Jursinic PA, Homann PH (1984) Studies on the mechanism of chloride action on photosynthetic water oxidation. Biochim Biophys Acta 766:636–646

    Article  CAS  Google Scholar 

  • Thornton LE, Ohkawa H, Roose JL, Kashino Y, Keren N, Pakrasi HB (2004) Homologs of plant PsbP and PsbQ proteins are necessary for regulation of photosystem II activity in the cyanobacterium Synechocystis 6803. Plant Cell 16:2164–2175

    Article  CAS  PubMed  Google Scholar 

  • Tichy M, Vermaas W (1998) Functional analysis of combinatorial mutants altered in a conserved region in loop E of the CP47 protein in Synechocystis sp. PCC 6803. Biochemistry 37:1523–1531

    Article  CAS  PubMed  Google Scholar 

  • van Gorkom HJ, Yocum CF (2005) The calcium and chloride cofactors. In: Wydrzynski TJ, Satoh K (eds) Photosystem II: the light-driven water: plastoquinone oxidoreductase. Springer, Dordrecht, pp 307–328

    Google Scholar 

  • van Vliet P, Boussac A, Rutherford AW (1994) Chloride depletion effects in the calcium-deficient oxygen-evolving complex of photosystem II. Biochemistry 33:12998–13004

    Article  PubMed  Google Scholar 

  • van Vliet P, Rutherford AW (1996) Properties of the chloride-depleted oxygen-evolving complex of photosystem II studied by electron paramagnetic resonance. Biochemistry 35:1829–1839

    Article  PubMed  Google Scholar 

  • Velthuys BR (1975) Binding of the inhibitor NH3 to the oxygen evolving apparatus of spinach chloroplasts. Biochim Biophys Acta 396:392–401

    Article  CAS  PubMed  Google Scholar 

  • Vrettos JS, Limburg J, Brudvig GW (2001) Mechanism of photosynthetic water oxidation: combining biophysical studies of photosystem II with inorganic model chemistry. Biochim Biophys Acta 1503:229–245

    Article  CAS  PubMed  Google Scholar 

  • Wincencjusz H, van Gorkom HJ, Yocum CF (1997) The photosynthetic oxygen evolving complex requires chloride for its redox state S2 → S3 and S3 → S0 transitions but not for S0 → S1 or S1 → S2 transitions. Biochemistry 36:3663–3670

    Article  CAS  PubMed  Google Scholar 

  • Wincencjusz H, Yocum CF, van Gorkom HJ (1998) S-state dependence of chloride binding affinity and exchange dynamics in the intact and polypeptide-depleted O2 evolving complex of photosystem II. Biochemistry 37:8595–8604

    Article  CAS  PubMed  Google Scholar 

  • Wincencjusz H, Yocum CF, van Gorkom HJ (1999) Activating anions that replace Cl in the O2-evolving complex of photosystem II slow the kinetics of the terminal step in water oxidation and destabilize the S2 and S3 states. Biochemistry 38:3719–3725

    Article  CAS  PubMed  Google Scholar 

  • Wydrzynski T, Baumgart F, Macmillan F, Renger G (1990) Is there a direct chloride requirement in the oxygen-evolving reactions of photosystem II? Photosynth Res 25:59–72

    Article  CAS  Google Scholar 

  • Yachandra VK (2005) The catalytic manganese cluster: organization of the metal ions. In: Wydrzynski TJ, Satoh K (eds) Photosystem II: the light-driven water: plastoquinone oxidoreductase. Springer, Dordrecht, pp 235–260

    Google Scholar 

  • Yachandra VK, Sauer K, Klein MP (1996) Manganese cluster in photosynthesis: Where plants oxidize water to dioxygen. Chem Rev 96:2927–2950

    Article  CAS  PubMed  Google Scholar 

  • Yano J, Kern J, Irrgang K-D, Latimer MJ, Bergmann U, Glatzel P, Pushkar Y, Biesiadka J, Loll B, Sauer K, Messinger J, Zouni A, Yachandra VK (2005) X-ray damage to the Mn4Ca complex in single crystals of photosystem II: a case study for metalloprotein crystallography. Proc Nat Acad Sci 102:12047–12052

    Article  CAS  PubMed  Google Scholar 

  • Young A, McChargue M, Frankel LK, Bricker TM, Putnam-Evans C (2002) Alterations of the oxygen-evolving apparatus induced by a 305Arg -> 305Ser mutation in the CP43 protein of Photosystem II from Synechocystis sp PCC 6803 under chloride-limiting conditions. Biochemistry 41:15747–15753

    Article  CAS  PubMed  Google Scholar 

  • Yu H, Aznar CP, Xu XZ, Brit RD (2005) Evidence that azide occupies the chloride binding site near the manganese cluster in photosystem II. Biochemistry 44:12022–12029

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the National Science Foundation (MCB0110455). CFY acknowledges a number of interesting and fruitful discussions with Govindjee, over more years than he (or Govindjee) would care to admit.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles F. Yocum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Popelková, H., Yocum, C.F. Current status of the role of Cl ion in the oxygen-evolving complex. Photosynth Res 93, 111–121 (2007). https://doi.org/10.1007/s11120-006-9121-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-006-9121-5

Keywords

Navigation