Skip to main content
Log in

The diversity and complexity of the cyanobacterial thioredoxin systems

  • Review
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Cyanobacteria perform oxygenic photosynthesis, which makes them unique among the prokaryotes, and this feature together with their abundance and worldwide distribution renders them a central ecological role. Cyanobacteria and chloroplasts of plants and algae are believed to share a common ancestor and the modern chloroplast would thus be the remnant of an endosymbiosis between a eukaryotic cell and an ancestral oxygenic photosynthetic prokaryote. Chloroplast metabolic processes are coordinated with those of the other cellular compartments and are strictly controlled by means of regulatory systems that commonly involve redox reactions. Disulphide/dithiol exchange catalysed by thioredoxin is a fundamental example of such regulation and represents the molecular mechanism for light-dependent redox control of an ever-increasing number of chloroplast enzymatic activities. In contrast to chloroplast thioredoxins, the functions of the cyanobacterial thioredoxins have long remained elusive, despite their common origin. The sequenced genomes of several cyanobacterial species together with novel experimental approaches involving proteomics have provided new tools for re-examining the roles of the thioredoxin systems in these organisms. Thus, each cyanobacterial genome encodes between one and eight thioredoxins and all components necessary for the reduction of thioredoxins. Screening for thioredoxin target proteins in cyanobacteria indicates that assimilation and storage of nutrients, as well as some central metabolic pathways, are regulated by mechanisms involving disulphide/dithiol exchange, which could be catalysed by thioredoxins or related thiol-containing proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

FTR:

ferredoxin–thioredoxin reductase

Grx:

glutaredoxin

GSH:

reduced glutathione

NTR:

NADP–thioredoxin reductase

Prx:

peroxiredoxin

Trx:

thioredoxin

References

  • Alam J, Curtis S, Gleason FK, Gerami-Nejad M, Fuchs JA (1989) Isolation, sequence, and expression in Escherichia coli of an unusual thioredoxin gene from the cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol 171:162–171

    PubMed  CAS  Google Scholar 

  • Balmer Y, Buchanan BB (2002) Yet another plant thioredoxin. Trends Plant Sci 7:191–193

    Article  PubMed  CAS  Google Scholar 

  • Balmer Y, Koller A, del Val G, Manieri W, Schurmann P, Buchanan BB (2003) Proteomics gives insight into the regulatory function of chloroplast thioredoxins. Proc Natl Acad Sci USA 100:370–375

    Article  PubMed  CAS  Google Scholar 

  • Balmer Y, Vensel WH, Tanaka CK, Hurkman WJ, Gelhaye E, Rouhier N, Jacquot JP, Manieri W, Schurmann P, Droux M, Buchanan BB (2004) Thioredoxin links redox to the regulation of fundamental processes of plant mitochondria. Proc Natl Acad Sci USA 101:2642–2647

    Article  PubMed  CAS  Google Scholar 

  • Brandes HK, Larimer FW, Hartman FC (1996) The molecular pathway for the regulation of phosphoribulokinase by thioredoxin f. J Biol Chem 271:3333–3335

    Article  PubMed  CAS  Google Scholar 

  • Buchanan BB (1980) Role of light in the regulation of chloroplast enzymes. Annu Rev Plant Physiol 31:341–374

    Article  CAS  Google Scholar 

  • Buchanan BB, Balmer Y (2005) Redox regulation: a broadening horizon. Annu Rev Plant Biol 56:187–220

    Article  PubMed  CAS  Google Scholar 

  • Buchanan BB, Schurmann P, Wolosiuk RA, Jacquot JP (2002) The ferredoxin/thioredoxin system: from discovery to molecular structures and beyond. Photosynth Res 73:215–222

    Article  PubMed  CAS  Google Scholar 

  • Dufresne A, Garczarek L, Partensky F (2005) Accelerated evolution associated with genome reduction in a free-living prokaryote. Genome Biol 6:R14

    Article  PubMed  Google Scholar 

  • Florencio FJ, Yee BC, Johnson TC, Buchanan BB (1988) An NADP/thioredoxin system in leaves: purification and characterization of NADP-thioredoxin reductase and thioredoxin h from spinach. Arch Biochem Biophys 266:496–507

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Fernandez JM, de Marsac NT, Diez J (2004) Streamlined regulation and gene loss as adaptive mechanisms in Prochlorococcus for optimized nitrogen utilization in oligotrophic environments. Microbiol Mol Biol Rev 68:630–638

    Article  PubMed  CAS  Google Scholar 

  • Gleason FK (1996) Glucose-6-phosphate dehydrogenase from the cyanobacterium, Anabaena sp. PCC 7120: purification and kinetics of redox modulation. Arch Biochem Biophys 334:277–283

    Article  PubMed  CAS  Google Scholar 

  • Gleason FK, Holmgren A (1981) Isolation and characterization of thioredoxin from the cyanobacterium, Anabaena sp. J Biol Chem 256:8306–8309

    PubMed  CAS  Google Scholar 

  • Gleason FK, Holmgren A (1988) Thioredoxin and related proteins in prokaryotes. FEMS Microbiol Rev 4:271–297

    PubMed  CAS  Google Scholar 

  • Holmgren A, Soderberg BO, Eklund H, Branden CI (1975) Three-dimensional structure of Escherichia coli thioredoxin-S2 to 2.8 A resolution. Proc Natl Acad Sci USA 72:2305–2309

    Article  PubMed  CAS  Google Scholar 

  • Hosoya-Matsuda N, Motohashi K, Yoshimura H, Nozaki A, Inoue K, Ohmori M, Hisabori T (2005) Anti-oxidative stress system in cyanobacteria. Significance of type II peroxiredoxin and the role of 1-Cys peroxiredoxin in Synechocystis sp. strain PCC 6803. J Biol Chem 280:840–846

    PubMed  CAS  Google Scholar 

  • Jacquot JP, Lancelin JM, Meyer Y (1997) Thioredoxins: structure and function in plant cells. New Phytol 136:543–570

    Article  CAS  Google Scholar 

  • Jaffe EK (2003) An unusual phylogenetic variation in the metal ion binding sites of porphobilinogen synthase. Chem Biol 10:25–34

    Article  PubMed  CAS  Google Scholar 

  • Kaneko T, Nakamura Y, Wolk CP, Kuritz T, Sasamoto S, Watanabe A, Iriguchi M, Ishikawa A, Kawashima K, Kimura T, Kishida Y, Kohara M, Matsumoto M, Matsuno A, Muraki A, Nakazaki N, Shimpo S, Sugimoto M, Takazawa M, Yamada M, Yasuda M, Tabata S (2001) Complete genomic sequence of the filamentous nitrogen-fixing cyanobacterium Anabaena sp. strain PCC 7120. DNA Res 8:205–213, 227–253

    Google Scholar 

  • Kaneko T, Sato S, Kotani H, Tanaka A, Asamizu E, Nakamura Y, Miyajima N, Hirosawa M, Sugiura M, Sasamoto S, Kimura T, Hosouchi T, Matsuno A, Muraki A, Nakazaki N, Naruo K, Okumura S, Shimpo S, Takeuchi C, Wada T, Watanabe A, Yamada M, Yasuda M, Tabata S (1996) Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res 3:109–136

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi D, Tamoi M, Iwaki T, Shigeoka S, Wadano A (2003) Molecular characterization and redox regulation of phosphoribulokinase from the cyanobacterium Synechococcus sp. PCC 7942. Plant Cell Physiol 44:269–276

    Article  PubMed  CAS  Google Scholar 

  • Krenn BE, Aardewijn P, Van Walraven HS, Werner-Grune S, Strotmann H, Kraayenhof R (1995) ATP synthase from a cyanobacterial Synechocystis 6803 mutant containing the regulatory segment of the chloroplast gamma subunit shows thiol modulation. Biochem Soc Trans 23:757–760

    PubMed  CAS  Google Scholar 

  • Laloi C, Rayapuram N, Chartier Y, Grienenberger JM, Bonnard G, Meyer Y (2001) Identification and characterization of a mitochondrial thioredoxin system in plants. Proc Natl Acad Sci USA 98:14144–14149

    Article  PubMed  CAS  Google Scholar 

  • Lemaire SD, Collin V, Keryer E, Quesada A, Miginiac-Maslow M (2003) Characterization of thioredoxin y, a new type of thioredoxin identified in the genome of Chlamydomonas reinhardtii. FEBS Lett 543:87–92

    Article  PubMed  CAS  Google Scholar 

  • Lemaire SD, Guillon B, Le Marechal P, Keryer E, Miginiac-Maslow M, Decottignies P (2004) New thioredoxin targets in the unicellular photosynthetic eukaryote Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 101:7475–7480

    Article  PubMed  CAS  Google Scholar 

  • Liedgens W, Lutz C, Schneider HA (1983) Molecular properties of 5-aminolevulinic acid dehydratase from Spinacia oleracea. Eur J Biochem 135:75–79

    Article  PubMed  CAS  Google Scholar 

  • Lim CJ, Gleason FK, Fuchs JA (1986) Cloning, expression, and characterization of the Anabaena thioredoxin gene in Escherichia coli. J Bacteriol 168:1258–1264

    PubMed  CAS  Google Scholar 

  • Lindahl M, Florencio FJ (2003) Thioredoxin-linked processes in cyanobacteria are as numerous as in chloroplasts, but targets are different. Proc Natl Acad Sci USA 100:16107–16112

    Article  PubMed  CAS  Google Scholar 

  • Lindahl M, Florencio FJ (2004) Systematic screening of reactive cysteine proteomes. Proteomics 4:448–450

    Article  PubMed  CAS  Google Scholar 

  • Marchand C, Le Marechal P, Meyer Y, Miginiac-Maslow M, Issakidis-Bourguet E, Decottignies P (2004) New targets of Arabidopsis thioredoxins revealed by proteomic analysis. Proteomics 4:2696–2706

    Article  PubMed  CAS  Google Scholar 

  • Mestres-Ortega D, Meyer Y (1999) The Arabidopsis thaliana genome encodes at least four thioredoxins m and a new prokaryotic-like thioredoxin. Gene 240:307–316

    Article  PubMed  CAS  Google Scholar 

  • Meyer Y, Reichheld JP, Vignols F (2005) Thioredoxins in Arabidopsis and other plants. Photosynth Res 86:419–433

    Article  PubMed  CAS  Google Scholar 

  • Miller AG, Hunter KJ, O’Leary SJ, Hart LJ (2000) The photoreduction of H(2)O(2) by Synechococcus sp. PCC 7942 and UTEX 625. Plant Physiol 123:625–636

    Article  PubMed  CAS  Google Scholar 

  • Motohashi K, Kondoh A, Stumpp MT, Hisabori T (2001) Comprehensive survey of proteins targeted by chloroplast thioredoxin. Proc Natl Acad Sci USA 98:11224–11229

    Article  PubMed  CAS  Google Scholar 

  • Muller EG (1994) Deoxyribonucleotides are maintained at normal levels in a yeast thioredoxin mutant defective in DNA synthesis. J Biol Chem 269:24466–24471

    PubMed  CAS  Google Scholar 

  • Muller EG, Buchanan BB (1989) Thioredoxin is essential for photosynthetic growth. The thioredoxin m gene of Anacystis nidulans. J Biol Chem 264:4008–4014

    PubMed  CAS  Google Scholar 

  • Navarro F, Florencio FJ (1996) The cyanobacterial thioredoxin gene is required for both photoautotrophic and heterotrophic growth. Plant Physiol 111:1067–1075

    Article  PubMed  CAS  Google Scholar 

  • Navarro F, Martin-Figueroa E, Florencio FJ (2000) Electron transport controls transcription of the thioredoxin gene (trxA) in the cyanobacterium Synechocystis sp. PCC 6803. Plant Mol Biol 43:23–32

    Article  PubMed  CAS  Google Scholar 

  • Pennisi E (2006) Microbial ecology. How a marine bacterium adapts to multiple environments. Science 311:1697

    Article  PubMed  CAS  Google Scholar 

  • Pérez-Pérez ME, Florencio FJ, Lindahl M (2006) Selecting thioredoxins for disulphide proteomics: target proteomes of three thioredoxins from the cyanobacterium Synechocystis sp. PCC 6803. Proteomics 6 (Suppl 1):S186–195

    Article  PubMed  Google Scholar 

  • Potamitou A, Holmgren A, Vlamis-Gardikas A (2002) Protein levels of Escherichia coli thioredoxins and glutaredoxins and their relation to null mutants, growth phase, and function. J Biol Chem 277:18561–18567

    Article  PubMed  CAS  Google Scholar 

  • Rippka R, Deruelles J, Waterbury JB, Herman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61

    Google Scholar 

  • Rippka R, Waterbury J, Cohen-Bazire G (1974) A cyanobacterium which lacks thylakoids. Arch Microbiol 100:419–436

    Article  CAS  Google Scholar 

  • Rocap G, Larimer FW, Lamerdin J, Malfatti S, Chain P, Ahlgren NA, Arellano A, Coleman M, Hauser L, Hess WR, Johnson ZI, Land M, Lindell D, Post AF, Regala W, Shah M, Shaw SL, Steglich C, Sullivan MB, Ting CS, Tolonen A, Webb EA, Zinser ER, Chisholm SW (2003) Genome divergence in two Prochlorococcus ecotypes reflects oceanic niche differentiation. Nature 424:1042–1047

    Article  PubMed  CAS  Google Scholar 

  • Rouhier N, Villarejo A, Srivastava M, Gelhaye E, Keech O, Droux M, Finkemeier I, Samuelsson G, Dietz KJ, Jacquot JP, Wingsle G (2005) Identification of plant glutaredoxin targets. Antioxid Redox Signal 7:919–929

    Article  PubMed  CAS  Google Scholar 

  • Saitoh M, Nishitoh H, Fujii M, Takeda K, Tobiume K, Sawada Y, Kawabata M, Miyazono K, Ichijo H (1998) Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. Embo J 17:2596–2606

    Article  PubMed  CAS  Google Scholar 

  • Schneider GJ, Tumer NE, Richaud C, Borbely G, Haselkorn R (1987) Purification and characterization of RNA polymerase from the cyanobacterium Anabaena 7120. J Biol Chem 262:14633–14639

    PubMed  CAS  Google Scholar 

  • Serrato AJ, Pérez-Ruiz JM, Spinola MC, Cejudo FJ (2004) A novel NADPH thioredoxin reductase, localized in the chloroplast, which deficiency causes hypersensitivity to abiotic stress in Arabidopsis thaliana. J Biol Chem 279:43821–43827

    Article  PubMed  CAS  Google Scholar 

  • Simon RD (1976) The biosynthesis of multi-L-arginyl-poly(L-aspartic acid) in the filamentous cyanobacterium Anabaena cylindrica. Biochim Biophys Acta 422:407–418

    PubMed  CAS  Google Scholar 

  • Sippola K, Aro EM (1999) Thiol redox state regulates expression of psbA genes in Synechococcus sp. PCC 7942. Plant Mol Biol 41:425–433

    Article  PubMed  CAS  Google Scholar 

  • Sparla F, Pupillo P, Trost P (2002) The C-terminal extension of glyceraldehyde-3-phosphate dehydrogenase subunit B acts as an autoinhibitory domain regulated by thioredoxins and nicotinamide adenine dinucleotide. J Biol Chem 277:44946–44952

    Article  PubMed  CAS  Google Scholar 

  • Spencer P, Jordan PM (1993) Purification and characterization of 5-aminolaevulinic acid dehydratase from Escherichia coli and a study of the reactive thiols at the metal-binding domain. Biochem J 290(Pt 1):279–287

    PubMed  CAS  Google Scholar 

  • Tichy M, Vermaas W (1999) In vivo role of catalase-peroxidase in Synechocystis sp. strain PCC 6803. J Bacteriol 181:1875–1882

    PubMed  CAS  Google Scholar 

  • Verdoucq L, Vignols F, Jacquot JP, Chartier Y, Meyer Y (1999) In vivo characterization of a thioredoxin h target protein defines a new peroxiredoxin family. J Biol Chem 274:19714–19722

    Article  PubMed  CAS  Google Scholar 

  • Vignols F, Brehelin C, Surdin-Kerjan Y, Thomas D, Meyer Y. (2005) A yeast two-hybrid knockout strain to explore thioredoxin-interacting proteins in vivo. Proc Natl Acad Sci USA 102:16729–16734

    Article  PubMed  CAS  Google Scholar 

  • Wenderoth I, Scheibe R, von Schaewen A (1997) Identification of the cysteine residues involved in redox modification of plant plastidic glucose-6-phosphate dehydrogenase. J Biol Chem 272:26985–26990

    Article  PubMed  CAS  Google Scholar 

  • Werner-Grune S, Gunkel D, Schumann J, Strotmann H (1994) Insertion of a “chloroplast-like” regulatory segment responsible for thiol modulation into gamma-subunit of F0F1-ATPase of the cyanobacterium Synechocystis 6803 by mutagenesis of atpC. Mol Gen Genet 244:144–150

    Article  PubMed  CAS  Google Scholar 

  • Wong JH, Balmer Y, Cai N, Tanaka CK, Vensel WH, Hurkman WJ, Buchanan BB (2003) Unraveling thioredoxin-linked metabolic processes of cereal starchy endosperm using proteomics. FEBS Lett 547:151–156

    Article  PubMed  CAS  Google Scholar 

  • Wynn R, Cocco MJ, Richards FM (1995) Mixed disulfide intermediates during the reduction of disulfides by Escherichia coli thioredoxin. Biochemistry 34:11807–11813

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto H, Miyake C, Dietz KJ, Tomizawa K, Murata N, Yokota A (1999) Thioredoxin peroxidase in the cyanobacterium Synechocystis sp. PCC 6803. FEBS Lett 447:269–273

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki D, Motohashi K, Kasama T, Hara Y, Hisabori T (2004) Target proteins of the cytosolic thioredoxins in Arabidopsis thaliana. Plant Cell Physiol 45:18–27

    Article  PubMed  CAS  Google Scholar 

  • Yano H, Kuroda S, Buchanan BB (2002) Disulfide proteome in the analysis of protein function and structure. Proteomics 2:1090–1096

    Article  PubMed  CAS  Google Scholar 

  • Yano H, Wong JH, Lee YM, Cho MJ, Buchanan BB (2001) A strategy for the identification of proteins targeted by thioredoxin. Proc Natl Acad Sci USA 98:4794–4799

    Article  PubMed  CAS  Google Scholar 

  • Yee BC, de la Torre A, Crawford NA, Lara C, Carlson DE, Buchanan BB (1981) The ferredoxin/thioredoxin enzyme regulation in a cyanobacterium. Arch Microbiol 130:14–18

    Article  CAS  Google Scholar 

  • Zhang N, Kallis RP, Ewy RG, Portis AR Jr (2002) Light modulation of Rubisco in Arabidopsis requires a capacity for redox regulation of the larger Rubisco activase isoform. Proc Natl Acad Sci USA 99:3330–3334

    Article  PubMed  CAS  Google Scholar 

  • Zhang N, Portis AR Jr (1999) Mechanism of light regulation of Rubisco: a specific role for the larger Rubisco activase isoform involving reductive activation by thioredoxin-f. Proc Natl Acad Sci USA 96:9438–9443

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco J. Florencio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Florencio, F.J., Pérez-Pérez, M.E., López-Maury, L. et al. The diversity and complexity of the cyanobacterial thioredoxin systems. Photosynth Res 89, 157–171 (2006). https://doi.org/10.1007/s11120-006-9093-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-006-9093-5

Keywords

Navigation