Skip to main content

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 41))

Summary

Cyanobacteria are unique in performing oxygenic photosynthesis and aerobic respiration in the same compartment. Therefore the bioenergetic situation of cyanobacteria can be considered to be the most complex among all organisms known. While the components of oxygenic photosynthesis are largely known, the components of cyanobacterial respiration still present a number of mysteries for two reasons: (1) Many cyanobacteria contain several respiratory electron transport chains (up to ten) and (2) there are at least eight types of respiratory terminal oxidases (RTOs) that catalyse the reduction of O2 to water in cyanobacteria. Starting from a list of all RTOs in all currently sequenced cyanobacterial genomes, this review defines the eight different types of known cyanobacterial RTOs: namely, mitochondrial-type cytochrome c oxidase, four types of alternate respiratory terminal oxidases (ARTOs), cytochrome c oxidase of the cbb 3 type, cytochrome bd-type quinol oxidases (cyanide sensitive or cyanide insensitive), and plastidic type terminal oxidase (Ptox). The goal of this chapter is to review current understanding of the function of these RTOs, especially in cyanbacteria that contain more than one RTO. The author starts from the hypothesis that in strains with more than one RTO, each must have a specific function, otherwise the genes encoding “superfluous” RTOs would quickly be lost by spontaneous mutation, because most RTOs consist of several polypeptide subunits that must be synthesized during every cell division cycle. Two conclusions can be drawn from the available data: (1) Every known cyanobacterium contains at least one RTO, and (2) no one type of RTO is present in all cyanobacteria. Furthermore, the available data probably allow the conclusion that all cyanobacteria contain at least one RTO that catalyzes the transfer of electrons from a soluble cytochrome c to O2 (cytochrome c oxidase reaction).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Aox:

Mitochondrial alternative oxidase

ARTO:

Alternate respiratory terminal oxidase

Cbb3:

cbb 3 type cytochrome c oxidase

CM:

Cytoplasmic membrane

Cox:

Mitrochondrial-type cytochrome c oxidase

Cyd:

Homolog of cytochrome bd-type quinol oxidase

ICM:

Intracytoplasmic membranes (thylakoids)

Ptox:

Plastidic type terminal oxidase

RTO:

Respiratory terminal oxidase

SU:

Subunit

References

  • Ardelean II, Peschek GA (2011) The site of respiratory electron transport in cyanobacteria and its implication for the photoinhibition of respiration. In: Peschek GA, Obinger C, Renger G (eds) Bioenergetic Processes of Cyanobacteria. Springer, Dordrecht, pp 131–136

    Chapter  Google Scholar 

  • Atteia A, van Lis R, van Hellemond JJ, Tielens AGM, Martin W, Henze K (2004) Identification of prokaryotic homologues indicates an endosymbiotic origin for the alternative oxidases of mitochondria (AOX) and chloroplasts (PTOX). Gene 330:143–148

    Article  CAS  PubMed  Google Scholar 

  • Bailey S, Melis A, Mackey KRM, Cardol P, Finazzi G, van Dijken G, Berg GM, …, Grossman A (2008) Alternative photosynthetic electron flow to oxygen in marine Synechococcus. Biochim Biophys Acta 1777:269–276

    Google Scholar 

  • Bernroitner M, Zamocky M, Pairer M, Peschek GA, Obinger C (2011) Cyanobacterial respiratory electron transport: heme-copper oxidases and their electron donors. In: Peschek GA, Obinger C, Renger G (eds) Bioenergetic Processes of Cyanobacteria. Springer, Dordrecht, pp 657–682

    Chapter  Google Scholar 

  • Berry S, Schneider D, Vermaas WFJ, Rögner M (2002) Electron transport routes in whole cells of Synechocystis sp. strain PCC 6803: the role of the cytochrome bd-type oxidase. Biochemistry 41:3422–3429

    Article  CAS  PubMed  Google Scholar 

  • Bombelli P, Bradley RW, Scott AM, Philips AJ, McCormick AJ, Cruz SM, Anderson A, …, Fisher AC (2011) Quantitative analysis of the factors limiting solar power transduction by Synechocystis sp. PCC 6803 in biological photovoltaic devices. Energy Environ Sci 4:4690–4698

    Google Scholar 

  • Borisov VB, Gennis RB, Hemp J, Verkhovsky MI (2011) The cytochrome bd respiratory oxygen reductases. Biochim Biophys Acta 1807:1398–1413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradley RW, Bombelli P, Lea-Smith DJ, Howe CJ (2013) Terminal oxidase mutants of the cyanobacterium Synechocystis sp. PCC 6803 show increased electrogenic activity in biological photo-voltaic systems. Phys Chem Chem Phys 15:13611–13618

    Article  CAS  PubMed  Google Scholar 

  • Burgstaller HM (2012) Respiratorische terminale Oxidasen im Cyanobakterium Synechococcus sp. Stamm PCC 7942. Diploma thesis, University of Vienna, Austria

    Google Scholar 

  • Campbell EL, Summers ML, Christman H, Martin ME, Meeks JC (2007) Global gene expression patterns of Nostoc punctiforme in steady-state dinitrogen-grown heterocyst-containing cultures and at single time points during the differentiation of akinetes and hormogonia. J Bacteriol 189:5247–5256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ducluzeau AL, Ouchane S, Nitschke W (2008) The cbb 3 oxidases are an ancient innovation of the domain bacteria. Mol Biol Evol 25:1158–1166

    Article  CAS  PubMed  Google Scholar 

  • Dupont CL, Johnson DA, Phillippy K, Paulsen IT, Brahamsha B, Palenik B (2012) Response to Ni deprivation in Synechococcus sp. strain WH8102. Appl Environ Microbiol 78:7822–7832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Durán RV, Hervás M, De la Rosa M, Navarro JA (2004) The efficient functioning of photosynthesis and respiration in Synechocystis sp. PCC 6803 strictly requires the presence of either cytochrome c 6 or plastocyanin. J Biol Chem 279:7229–7233

    Article  PubMed  Google Scholar 

  • Ehira S (2013) Transcriptional regulation of heterocyst differentiation in Anabaena sp. strain PCC 7120. Russ J Plant Physiol 60:443–452

    Article  CAS  Google Scholar 

  • Ekici S, Pawlik G, Lohmeyer E, Koch HG, Daldal F (2012) Biogenesis of cbb 3-type cytochrome c oxidase in Rhodobacter capsulatus. Biochim Biophys Acta 1817:898–910

    Article  CAS  PubMed  Google Scholar 

  • Flores E, Herrero A (2010) Compartmentalized function through cell differentiation in filamentous cyanobacteria. Nat Rev Microbiol 8:39–50

    Article  CAS  PubMed  Google Scholar 

  • Fromwald S, Zoder R, Wastyn M, Lübben M, Peschek GA (1996) Extended heme promiscuity in the cyanobacterial cytochrome c oxidase: characterization of native complexes containing hemes A, O, and D, respectively. Arch Biochem Biophys 367:122–128

    Article  Google Scholar 

  • Fry IV, Hufleijt M, Erber WA, Peschek GA, Packer L (1986) The role of respiration during adaption of the freshwater cyanobacterium Synechococcus 6311 to salinity. Arch Biochem Biophys 244:686–691

    Article  CAS  PubMed  Google Scholar 

  • Gendrullis M, Dyczmons N, Gomolla D, Gathmann S, Bernát G, Schneider D, Rögner M (2008) PetP, a new cytochrome b 6 f subunit, and cytochrome bd oxidase – two potential regulatory players of cyanobacterial electron transport. In: Allen JF, Gantt E, Golbeck JH, Osmond B (eds) Photosynthesis, Energy from the Sun. Springer, Dordrecht, pp 585–589

    Chapter  Google Scholar 

  • Gennis RB, Stewart V (1996) Respiration. In: Neidhardt FC et al (eds) Escherichia coli and Salmonella. ASM Press, Washington, DC, pp 217–261

    Google Scholar 

  • Golden SS, Ishiura M, Johnson CH, Kondo T (1997) Cyanobacterial circadian rhythms. Annu Rev Plant Physiol Plant Mol Biol 48:327–354

    Article  CAS  PubMed  Google Scholar 

  • González A, Bes MT, Valladares A, Peleato ML, Fillat MF (2012) FurA is the master regulator of iron homeostasis and modulates the expression of tetrapyrrole biosynthesis in Anabaena sp. PCC 7120. Environ Microbiol 14:3175–3187

    Article  PubMed  Google Scholar 

  • González A, Espinosa Angarica V, Sancho J, Fillat MF (2014) The FurA regulon in Anabaena sp. PCC 7120: in silico prediction and experimental validation of novel target genes. Nucl Acids Res 42. doi:10.1093/nar/gku123

    Google Scholar 

  • Hagemann M (2011) Molecular biology of cyanobacterial salt acclimation. FEMS Microbiol Rev 35:87–123

    Article  CAS  PubMed  Google Scholar 

  • Hakkila K, Antal T, Gunnelius L, Kurkela J, Matthijs HCP, Tyystjärvi E, Tyystjärvi T (2013) Group 2 sigma factor mutant ΔsigCDE of the cyanobacterium Synechocystis sp.PCC 6803 reveals functionality of both carotenoids and flavodiiron proteins in photoprotection of photosystem II. Plant Cell Physiol 54:1780–1790

    Article  CAS  PubMed  Google Scholar 

  • Hart SE, Schlarb-Ridley BG, Bendall DS, Howe CJ (2005) Terminal oxidases of cyanobacteria. Biochem Soc Trans 33:832–835

    Article  CAS  PubMed  Google Scholar 

  • Hervás M, Diaz-Quintana A, Kerfeld CA, Krogman DW, De la Rosa NA, Navarro JA (2005) Cyanobacterial photosystem I lacks specificity in its interaction with cytochrome c(6) electron donors. Photosyth Res 83:329–333

    Article  Google Scholar 

  • Ho KK, Kerfield C, Krogman DW (2011) The water soluble cytochromes of cyanobacteria. In: Peschek GA, Obinger C, Renger G (eds) Bioenergetic Processes of Cyanobacteria. Springer, Dordrecht, pp 515–540

    Chapter  Google Scholar 

  • Howitt CA, Vermaas WFJ (1998) Quinol and cytochrome oxidases in the cyanobacterium Synechocystis sp. PCC 6803. Biochemistry 37:17944–17951

    Article  CAS  PubMed  Google Scholar 

  • Ignacio-Espinoza JC, Sullivan MB (2012) Phylogenomics of T4 cyanophages: lateral gene transfer in the ‘core’ and origins of host genes. Environ Microbiol 14:2113–2126

    Article  CAS  PubMed  Google Scholar 

  • Ito Y, Saisho D, Nakazono M, Tsutsumi N, Hirai A (1997) Transcript levels of tandem-arranged alternative oxidase genes in rice are increased by low temperature. Gene 203:121–129

    Article  CAS  PubMed  Google Scholar 

  • Ito H, Mutsuda M, Murayama Y, Tomita J, Hosokawa N, Terauchi K, Sugita C, …, Iwasaki H (2009) Cyanobacterial daily life with Kai-based circadian and diurnal genome-wide transcriptional control in Synechococcus elongatus. Proc Natl Acad Sci USA 106:14168–14173

    Google Scholar 

  • Iwata S, Ostermeier C, Ludwig B, Michel H (2002) Structure at 2.8 Å resolution of cytochrome c oxidase from Paracoccus denitrificans. Nature 376:660–669

    Article  Google Scholar 

  • Jeanjean R, Matthijs HCP, Onana B, Havaux M, Joset F (1993) Exposure of the cyanobacterium Synechocystis PCC6803 to salt stress induces concerted changes in respiration and photosynthesis. Plant Cell Physiol 34:1073–1079

    CAS  Google Scholar 

  • Johnson CH, Stewart PL, Egli M (2011) The cyanobacterial circadian system: from biophysics to bioevolution. Annu Rev Biophys 40:143–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones KM, Haselkorn R (2002) Newly identified cytochrome c oxidase operon in the nitrogen-fixing cyanobacterium Anabaena sp. strain PCC 7120 specifically induced in heterocysts. J Bacteriol 184:2491–2499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Josse EM, Alcaraz JP, Labouré AM, Kuntz M (2003) In vitro characterization of a plastid terminal oxidase (PTOX). Eur J Biochem 270:3787–3794

    Article  CAS  PubMed  Google Scholar 

  • Kranzler C, Lis H, Finkel OM, Schmetterer G, Shaked Y, Keren N (2013) Coordinated transporter activity shapes high-affinity iron acqusition in cyanobacteria. ISME J 8:409–417

    Article  PubMed  PubMed Central  Google Scholar 

  • Kucho KI, Okamoto K, Tsuchiya Y, Nomura S, Nango M, Kanehisa M, Ishiura M (2005) Global analysis of circadian expression in the cyanobacterium Synechocystis sp. strain PCC 6803. J Bacteriol 187:2190–2199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kushige H, Kugenuma H, Matsuoka M, Ehira S, Ohmori M, Iwasaki H (2013) Genome-wide and heterocyst-specific circadian gene expression in the filamentous cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol 195:1276–1284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larsson S, Källebring B, Wittung P, Malmström BG (1995) The CuA center of cytochrome-c oxidase: electronic structure and spectra of models compared to the properties of CuA domains. Proc Natl Acad Sci U S A 92:7167–7171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lea-Smith D, Ross N, Zori M, Bendall DS, Dennis JS, Scott SA, Smith AG, Howe CJ (2013) Thylakoid terminal oxidases are essential for the cyanobacterium Synechocystis sp. PCC 6803 to survive rapidly changing light intensities. Plant Physiol 162:484–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Tsinoremas NF, Johnson CH, Lebedeva NV, Golden SS, Ishiura M, Kondo T (1995) Circadian orchestration of gene expression in cyanobacteria. Genes Dev 9:1469–1478

    Article  CAS  PubMed  Google Scholar 

  • Los DA, Suzuki I, Zinchenko VV, Murata N (2008) Stress responses in Synechocystis: regulated genes and regulatory systems. In: Herrero A, Flores E (eds) The Cyanobacteria, Molecular Biology, Genomics and Evolution. Caister Academic Press, Norfolk, pp 117–157

    Google Scholar 

  • McDonald AE, Vanlerberghe GC (2004) Alternative oxidase and plastoquinol terminal oxidase in marine prokaryotes of the Sargasso Sea. Gene 349:15–24

    Article  Google Scholar 

  • McDonald AE, Amirsadeghi S, Vanlerberghe GC (2003) Prokaryotic orthologues of mitochondrial alternative oxidase and plastid terminal oxidase. Plant Mol Biol 53:865–876

    Article  CAS  PubMed  Google Scholar 

  • McDonald AE, Ivanov AG, Bode R, Maxwell DP, Rodermel SR, Hüner NPA (2011) Flexibility in photosynthetic electron transport : the physiological role of plastoquinol terminal oxidase (PTOX). Biochim Biophys Acta 1807:954–967

    Article  CAS  PubMed  Google Scholar 

  • Meeks JC, Campbell EL, Summers ML, Wong FC (2002) Cellular differentiation in the cyanobacterium Nostoc punctiforme. Arch Microbiol 178:395–40

    Article  CAS  PubMed  Google Scholar 

  • Mikulic M (2013) Knock-out mutants of respiratory terminal oxidases in the cyanobacterium Anabaena sp. strain PCC 7120. Diploma thesis, Univeristy of Vienna, Austria

    Google Scholar 

  • Mogi T, Miyoshi H (2009) Properties of cytochrome bd plastoquinol oxidase from the cyanobacterium Synechocystis sp. PCC 6803. J Biochem 145:395–401

    Article  CAS  PubMed  Google Scholar 

  • Moisander PH, Beinart RA, Hewson I, White A, Johnson KS, Carlson CA, Montoya JP, Zehr JP (2010) Unicellular cyanobacterial distributions broaden the oceanic N2 fixation domain. Science 327:1512–1514

    Article  CAS  PubMed  Google Scholar 

  • Murry MA, Olafsen AG, Benemann JR (1981) Oxidation of diaminobenzidine in the heterocysts of Anabaena cylindrica. Curr Microbiol 6:201–206

    Article  CAS  Google Scholar 

  • Nicolaisen K, Hahn A, Valdebenito M, Moslavac S, Samborski A, Maldener I, Wilken C, …, Schleiff E (2010) The interplay between siderophore secretion and coupled iron and copper transport in the heterocyst-forming cyanobacterium Anabaena sp. PCC 7120. Biochim Biophys Acta 1798:2131–2140

    Google Scholar 

  • Nitschmann WH, Packer L (1992) NMR studies on Na+ transport in Synechococcus PCC 6311. Arch Biochem Biophys 294:347–352

    Article  CAS  PubMed  Google Scholar 

  • Nomura CT, Persson S, Shen G, Inoue-Sakamoto K, Bryant DA (2006a) Characterization of two cytochrome oxidase operons in the marine cyanobacterium Synechococcus sp. PCC 7002: inactivation of ctaDI affects the PSI:PSII ratio. Photosynth Res 87:215–228

    Article  CAS  PubMed  Google Scholar 

  • Nomura CT, Sakamoto T, Bryant DA (2006b) Roles for heme-copper oxidases in extreme high-light and oxidative stress response in the cyanobacterium Synechococcus sp. PCC7002. Arch Microbiol 185:471–479

    Google Scholar 

  • Oh J-I, Kaplan S (1999) The cbb 3 terminal oxidase of Rhodobacter sphaeroides 2.4.1: structural and functional implications for the regulation of spectral complex formation. Biochemistry 38:2688–2696

    Article  CAS  PubMed  Google Scholar 

  • Oh J-I, Kaplan S (2004) Oxidases as sensors in pigment synthesis. In: Zannoni D (ed) Respiration in Archaea and Bacteria: Diversity of Prokaryotic Electron Carriers, vol 15. Springer, Dordrecht, pp 287–309

    Google Scholar 

  • Paquin B, Kathe SD, Nierzwicki-Bauer SA, Shub DA (1997) Origin and evolution of group I introns in cyanobacterial tRNA genes. J Bacteriol 179:6798–6806

    CAS  PubMed  PubMed Central  Google Scholar 

  • Paumann M, Bernroitner M, Lubura B, Peer M, Jakopitsch C, Furtmüller PG, Peschek GA, Obinger C (2004a) Kinetics of electron transfer between plastocyanin and the soluble CuA domain of cyanobacterial cytochrome c oxidase. FEMS Microbiol Lett 239:301–307

    Article  CAS  PubMed  Google Scholar 

  • Paumann M, Lubura B, Regelsberger G, Feichtinger M, Kollensberger G, Jakopitsch C, Furtmüller PG, …, Obinger C (2004b) Soluble CuA domain of cyanobacterial cytochrome c oxidase. J Biol Chem 279:10293–10303

    Google Scholar 

  • Pils D, Gregor W, Schmetterer G (1997) Evidence for in vivo activity of three distinct respiratory terminal oxidases in the cyanobacterium Synechocystis sp. strain PCC 6803. FEMS Microbiol Lett 152:83–88

    Article  CAS  Google Scholar 

  • Pisareva T, Kwon J, Oh J, Kim S, Ge C, Wieslander A, Choi JS, Norling B (2011) Model for membrane organization and protein sorting in the cyanobacterium Synechocystis sp. PCC 6803 inferred from proteomics and multivariate sequence analyses. J Proteome Res 10:3617–3633

    Article  CAS  PubMed  Google Scholar 

  • Pitcher RS, Watmough NJ (2004) The bacterial cytochrome cbb 3 oxidases. Biochim Biophys Acta 1655:388–399

    Article  CAS  PubMed  Google Scholar 

  • Rippka R, Waterbury J, Cohen-Bazire G (1974) A cyanobaacterium which lacks thylakoids. Arch Microbiol 100:419–436

    Article  CAS  Google Scholar 

  • Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61

    Google Scholar 

  • Saraste M, Metso T, Nakari T, Jalli T, Lauraeus M, Van der Oost J (1991) The Bacillus subtilis cytochrome-c oxidase, variations on a conserved protein theme. Eur J Biochem 195:517–525

    Article  CAS  PubMed  Google Scholar 

  • Saraste M, Castresana J, Higgins D, Lübben M, Wilmanns M (1996) Evolution of cytochrome oxidase. In: Baltscheffsky H (ed) Origin and evolution of biological energy conversion. VCH Publishers, New York, pp 255–289

    Google Scholar 

  • Schmetterer G (1994) Cyanobacterial respiration. In: Bryant DA (ed) The Molecular Biology of Cyanobacteria. Springer, Dordrecht, pp 409–435

    Chapter  Google Scholar 

  • Schmetterer G, Pils D (2004) Cyanobacterial respiration. In: Zannoni D (ed) Respiration in Archaea and Bacteria, Diversity of Prokaryotic Respiratory Systems, vol 16. Springer, Dordrecht, pp 261–278

    Chapter  Google Scholar 

  • Schmetterer G, Valladares A, Pils D, Steinbach S, Pacher M, Muro-Pastor AM, Flores E, Herrero A (2001) The coxBAC operon encodes a cytochrome c oxidase required for heterotrophic growth in the cyanobacterium Anabaena variabilis strain ATCC 29413. J Bacteriol 183:6429–6434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmetterer G, Burgstaller H, Mikulic M, Stebegg R (2010) The respratory terminal oxidases of cyanobacteria. In: Kerfeld C, Schluchter W (eds) Book of Abstracts, 10th Cyanobacterial Molecular Biology Workshop. UCLA Conference Center, Lake Arrowhead, p P16

    Google Scholar 

  • Sotiriou C, Chang CK (1988) Synthesis of the heme d prosthetic group of bacterial terminal oxidase. J Am Chem Soc 110:2264–2270

    Article  CAS  Google Scholar 

  • Stebegg R, Wurzinger B, Mikulic M, Schmetterer G (2012) Chemoheterotrophic growth of the cyanobcterium Anabaena sp. strain PCC 7120 dependent on a functional cytochrome c oxidase. J Bacteriol 194:4601–4607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sullivan MB, Katherine H, Huang KH, Ignacio-Espinoza JC, Berlin AM, Kelly L, Weigele PR, …, Chisholm SW (2010) Genomic analysis of oceanic cyanobacterial myoviruses compared with T4-like myoviruses from diverse hosts and environments. Environm Microbiol 12:3035–3058

    Google Scholar 

  • Tchernov D, Silverman J, Luz B, Reinhold L, Kaplan A (2003) Massive light-dependent cycling of inorganic carbon between oxygenic photosynthetic microorganisms and their surroundings. Photosynth Res 77:95–103

    Article  CAS  PubMed  Google Scholar 

  • Terauchi K, Kondo T (2008) The cyanobacterial circadian clock and the KaiC phosphorylation cycle. In: Herrero A, Flores E (eds) The Cyanobacteria, Molecular Biology. Genomics and Evolution. Caister Academic Press, Norfolk, pp 199–216

    Google Scholar 

  • Thompson AW, Foster RA, Krupke A, Carter BJ, Musat N, Vaulot D, Kuypers MMM, Zehr JP (2012) Unicellular cyanobacterium symbiotic with a single-celled eukaryotic alga. Science 227:1546–1550

    Article  Google Scholar 

  • Timkovich R, Cork MS, Gemis RB, Johnson PY (1985) Proposed structure of heme d, a prosthetic group of bacteria. J Am Chem Soc 107:6069–6075

    Article  CAS  Google Scholar 

  • Tsukihara T, Aoyama H, Yamashita E, Tomizaki T, Yamaguchi H, Shinzawa-Itoh K, Nakashima R, …, Yoshikawa S (1996) The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 Å. Science 272:1136–1144

    Google Scholar 

  • Valladares A, Herrero A, Pils D, Schmetterer G, Flores E (2003) Cytochrome c oxidase genes required for nitrogenase activity and diazotrophic growth ion Anabaena sp. PCC 7120. Mol Microbiol 47:1238–1249

    Article  Google Scholar 

  • Valladares A, Maldener I, Muro-Pastor AM, Flores E, Herrero A (2007) Heterocyst development and diazotrophic metabolism in terminal respiratory oxidase mutants of the cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol 189:4425–4430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolk CP, Ernst A, Elhai J (1994) Heterocyst metabolism and development. In: Bryant DA (ed) The Molecular Biology of Cyanobacteria. Kluwer, Dordrecht, pp 770–823

    Google Scholar 

  • Wu H, Hu Z, Liu XQ (1998) Protein trans-splicing by a split intein encoded in a split DnaE gene of Synechocystis sp. PCC6803. Proc Natl Acad Sci U S A 95:9226–9231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu CH, Nejidat A, Belkin S, Boussiba S (1994) Isolation and characterization of the plasma membrane by two-phase partitioning from the alkalophilic cyanobacterium Spirulina platensis. Plant Cell Physiol 35:737–741

    CAS  Google Scholar 

  • Yoshikawa S, Muramoto K, Shinzawa-Itoh K, Mochizuki M (2012) Structural studies on bovine heart cytochrome c oxidase. Biochim Biophys Acta 1817:579–589

    Article  CAS  PubMed  Google Scholar 

  • Zehr JP, Waterbury JB, Turner PJ, Montoya JP, Omoregie E, Steward GF, Hansen A, Karl DM (2001) Unicellular cyanobacteria fix N2 in the subtropical North Pacific Ocean. Nature 412:635–638

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author is very grateful to Prof. Annette Rompel, Head of Institute, for hosting him in her Institute of Biophysical Chemistry after his retirement from the Institute of Physical Chemistry at the University of Vienna. Important discussions with Prof. Enrique Flores, CSIC-Universidad de Sevilla, Sevilla, Spain, are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Schmetterer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Schmetterer, G. (2016). The Respiratory Terminal Oxidases (RTOs) of Cyanobacteria. In: Cramer, W., Kallas, T. (eds) Cytochrome Complexes: Evolution, Structures, Energy Transduction, and Signaling. Advances in Photosynthesis and Respiration, vol 41. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7481-9_17

Download citation

Publish with us

Policies and ethics