Skip to main content
Log in

Down co-regulation of light absorption, photochemistry, and carboxylation in Fe-deficient plants growing in different environments

  • REGULAR PAPER
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

The regulation of photosynthesis through changes in light absorption, photochemistry, and carboxylation efficiency has been studied in plants grown in different environments. Iron deficiency was induced in sugar beet (Beta vulgaris L.) by growing plants hydroponically in controlled growth chambers in the absence of Fe in the nutrient solution. Pear (Pyrus communis L.) and peach (Prunus persica L. Batsch) trees were grown in field conditions on calcareous soils, in orchards with Fe deficiency-chlorosis. Gas exchange parameters were measured in situ with actual ambient conditions. Iron deficiency decreased photosynthetic and transpiration rates, instantaneous transpiration efficiencies and stomatal conductances, and increased sub-stomatal CO2 concentrations in the three species investigated. Photosynthesis versus CO2 sub-stomatal concentration response curves and chlorophyll fluorescence quenching analysis revealed a non-stomatal limitation of photosynthetic rates under Fe deficiency in the three species investigated. Light absorption, photosystem II, and Rubisco carboxylation efficiencies were down-regulated in response to Fe deficiency in a coordinated manner, optimizing the use of the remaining photosynthetic pigments, electron transport carriers, and Rubisco.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

A :

net CO2 uptake rate per unit leaf area

α:

leaf absorptance

C a :

CO2 ambient concentration

ε:

apparent carboxylation efficiency

Chl:

chlorophyll

C i :

CO2 sub-stomatal concentration

E:

transpiration rate

ΦPSII and Φexc. :

actual and intrinsic photosystem II efficiencies, respectively

FO and FO′:

minimal Chl fluorescence yield in the dark or during energization, respectively

FM and FM′:

maximal Chl fluorescence yield in the dark or during energization, respectively

FR:

far-red

F S :

Chl fluorescence at steady-state photosynthesis

FV and FV′:

FMFO and FM′ – FO′, respectively

g s :

stomatal conductance

Γ:

CO2 compensation pressure

J max :

in vivo maximum rate of electron transport driving regeneration of RuBP

NPQ:

non-photochemical quenching

PAR:

photosynthetic active radiation

PCA:

principal component analysis

PPFD:

photosynthetic photon flux density

PSI and PSII:

photosystems I and II, respectively

qP:

photochemical quenching

ROS:

reactive oxygen species

Rubisco:

ribulose-1,5-bisphosphate carboxylase

RuBP:

ribulose bisphosphate

V + A + Z:

violaxanthin + antheraxanthin + zeaxanthin

V c,max :

in vivo maximum rate of Rubisco carboxylation

References

  • Abadía A, Ambard-Bretteville F, Remy R, Trémolières A (1988) Iron-deficiency in pea leaves: effect on lipid composition and synthesis. Physiol Plant 72:713–717

    Article  Google Scholar 

  • Abadía J (1992) Leaf responses to Fe deficiency. A Review J Plant Nutr 15:1699–1713

    Google Scholar 

  • Abadía J, Abadía A (1993) Iron and plants pigments. In: Barton L, Hemming B (eds) Iron chelation in plants and soil microorganisms. Academic Press, San Diego, pp 327–344

    Google Scholar 

  • Abadía J, Morales F, Abadía A (1999) Photosystem II efficiency in low chlorophyll, iron-deficient leaves. Plant Soil 215:183–192

    Article  Google Scholar 

  • Andersen PC (1991) Leaf gas exchange of 11 species of fruit crops with reference to sun-tracking/non-sun-tracking responses. Can J Plant Sci 71:1183–1193

    Google Scholar 

  • Badger MR (1985) Photosynthetic oxygen exchange. Annu Rev Plant Physiol 36:27–53

    Article  CAS  Google Scholar 

  • Ball JT, Berry JA (1982) The C i/C s ratio: a basis for predicting stomatal control of photosynthesis. Carnegie Inst Washington Yearb 81:88–92

    Google Scholar 

  • Belkhodja R, Morales F, Quílez R, López-Millán AF, Abadía A, Abadía J (1998a) Iron deficiency causes changes in chlorophyll fluorescence due to the reduction in the dark of the photosystem II acceptor side. Photosynth Res 25:173–185

    Google Scholar 

  • Belkhodja R, Morales F, Sanz M, Abadía A, Abadía J (1998b) Iron deficiency in peach trees: effects on leaf chlorophyll and nutrient concentrations in flowers and leaves. Plant Soil 203:257–268

    Article  CAS  Google Scholar 

  • Chalmers DJ, Canterford RL, Jerie PH, Jones TR, Ugalde TD (1975) Photosynthesis in relation to growth and distribution of fruit in peach trees. Aust J Plant Physiol 2:635–645

    Google Scholar 

  • Crews CE, Williams SL, Vines HM (1975) Characteristics of photosynthesis in peach leaves. Planta 126:97–104

    Article  CAS  Google Scholar 

  • Davis T, Jolley V, Walser R, Brown J, Blaylock A (1986) Net photosynthesis of Fe-efficient and Fe-inefficient soybean cultivars grown under varying iron levels. J Plant Nutr 9:671–681

    CAS  Google Scholar 

  • Demmig-Adams B (1990) Carotenoids and photoprotection: a role for the xanthophyll zeaxanthin. Biochim Biophys Acta 1020:1–24

    Article  CAS  Google Scholar 

  • Demmig-Adams B, Adams III WW (1992) Photoprotection and other responses of plants to high light stress. Annu Rev Plant Physiol Plant Mol Biol 43:599–626

    Article  CAS  Google Scholar 

  • Demmig-Adams B, Adams III WW (2002) Antioxidants in photosynthesis and human nutrition. Science 298:2149–2153

    Article  PubMed  CAS  Google Scholar 

  • Dubey RS (1997) Photosynthesis in plants under stressful conditions. In: Pessarakli M (ed) Handbook of photosynthesis. Marcel Dekker Inc, New York, pp 859–875

    Google Scholar 

  • Evans JR, Seeman JR (1984) Differences between wheat genotypes in specific activity of ribulose-1,5-bisphosphate carboxylase and the relationship to photosynthesis. Plant Physiol 74:759–765

    PubMed  CAS  Google Scholar 

  • Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90

    Article  CAS  Google Scholar 

  • Formaggio E, Cinque G, Bassi R (2001) Functional architecture of the major light-harvesting from higher plants. J Mol Biol 314:1157–1166

    Article  PubMed  CAS  Google Scholar 

  • Foyer CH, Lelandais M, Kunert KJ (1994) Photooxidative stress in plants. Physiol Plant 92:696–717

    Article  CAS  Google Scholar 

  • Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92

    CAS  Google Scholar 

  • González-Vallejo EB, Morales F, Cistué L, Abadía A, Abadía J (2000) Iron deficiency decreases the Fe(III)-chelate reducing activity of leaf protoplasts. Plant Physiol 122:337–344

    Article  PubMed  Google Scholar 

  • Havaux M, Niyogi KK (1999) The violaxanthin cycle protects plants from photooxidative damage by more than one mechanism. Proc Natl Acad Sci USA 96:8762–8767

    Article  PubMed  CAS  Google Scholar 

  • Heras L (1960) Influence of light intensity on the redox potential in leaves in cases of iron-induced chlorosis. Nature 188:335–336

    Article  CAS  Google Scholar 

  • Hurley AK, Walser RH, Davis TD (1986a) Net photosynthesis and chlorophyll content in silver maple after trunk injection of ferrous sulfate. J Plant Nutr 9:683–693

    CAS  Google Scholar 

  • Hurley AK, Walser RH, Davis TD, Barney DL (1986b) Net photosynthesis, chlorophyll, and foliar iron in apple trees after injection with ferrous sulfate. HortSci 21:1029–1031

    CAS  Google Scholar 

  • Iturbe-Ormaetxe I, Morán JF, Arrese-Igor C, Gogorcena Y, Klucas RV, Becana M (1995) Activated oxygen and antioxidant defences in iron-deficient pea plants. Plant Cell Environ 18:421–429

    Article  CAS  Google Scholar 

  • Larbi A (2003) Clorosis férrica: Respuestas de las plantas y métodos de corrección. PhD Thesis, University of Lleida, Spain

  • Larbi A, Abadía A, Morales F, Abadía J (2004) Fe resupply to Fe-deficient sugar beet plants leads to rapid changes in the violaxanthin cycle and other photosynthetic characteristics without significant de novo chlorophyll synthesis. Photosynth Res 79:59–69

    Article  PubMed  CAS  Google Scholar 

  • Larbi A, Morales F, Abadía A, Abadía J (2003) Effects of branch solid Fe sulphate implants on xylem sap composition in field-grown peach and pear: changes in Fe, organic anions and pH. J Plant Physiol 160:1473–1481

    Article  PubMed  CAS  Google Scholar 

  • Larbi A, Morales F, López-Millán AF, Gogorcena Y, Abadía A, Moog PR, Abadía J (2001) Technical advance: reduction of Fe(III)-chelates by mesophyll leaf disks of sugar beet. Multi-component origin and effects of Fe deficiency. Plant Cell Physiol 42:94–105

    Article  PubMed  CAS  Google Scholar 

  • Le Roux X, Walcroft AS, Daudet FA, Sinoquet H, Chaves MM, Rodrigues A, Osorio L (2001) Photosynthetic light acclimation in peach leaves: importance of changes in mass:area ratio, nitrogen concentration, and leaf nitrogen partitioning. Tree Physiol 21:377–386

    PubMed  CAS  Google Scholar 

  • Long SP, Bernacchi CJ (2003) Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error. J Exp Bot 54:2393–2401

    Article  PubMed  CAS  Google Scholar 

  • López-Millán AF, Morales F, Abadía A, Abadía J (2000) Effects of iron deficiency on the composition of the leaf apoplastic fluid and xylem sap in sugar beet. Implications for iron and carbon transport. Plant Physiol 124:873–884

    Article  PubMed  Google Scholar 

  • López-Millán AF, Morales F, Abadía A, Abadía J (2001a) Iron deficiency-associated changes in the composition of the leaf apoplastic fluid from field-grown pear (Pyrus communis L.) trees. J Exp Bot 52:1489–1498

    Article  Google Scholar 

  • López-Millán AF, Morales F, Abadía A, Abadía J (2001b) Changes induced by Fe deficiency and Fe resupply in the organic acid metabolism of sugar beet (Beta vulgaris) leaves. Physiol Plant 112:31–38

    Article  Google Scholar 

  • Masoni A, Ercoli L, Mariotti M (1996) Spectral properties of leaves deficient in iron, sulfur, magnesium and manganese. Agron J 88:937–943

    Article  CAS  Google Scholar 

  • Miller GW, Jen Huang I, Welkie GW, Pushnik JC (1995) Function of iron in plants with special emphasis on chloroplasts and photosynthetic activity. In: Abadía J (ed) Iron nutrition in soils and plants. Kluwer Academic Publishers, Dordrecht, pp 19–28

    Google Scholar 

  • Morales F, Abadía A, Abadía J (1990) Characterization of the xanthophyll cycle and other photosynthetic pigment changes induced by iron deficiency in sugar beet (Beta vulgaris L.). Plant Physiol 94:607–613

    PubMed  CAS  Google Scholar 

  • Morales F, Abadía A, Abadía J (1991) Chlorophyll fluorescence and photon yield of oxygen evolution in iron-deficient sugar beet (Beta vulgaris L.) leaves. Plant Physiol 97:886–893

    PubMed  CAS  Google Scholar 

  • Morales F, Abadía A, Abadía J (1998a) Photosynthesis, quenching of chlorophyll fluorescence and thermal energy dissipation in iron-deficient sugar beet leaves. Aust J Plant Physiol 25:403–412

    Article  CAS  Google Scholar 

  • Morales F, Abadía A, Abadía J (2006) Photoinhibition and photoprotection under nutrient deficiencies, drought and salinity. In: Demmig-Adams B, Adams III WW, Mattoo AK (eds) Photoprotection, photoinhibition, gene regulation, and environment. Springer, The Netherlands, pp 65–85

    Chapter  Google Scholar 

  • Morales F, Abadía A, Belkhodja R, Abadía J (1994) Iron deficiency-induced changes in the photosynthetic pigment composition of field-grown pear (Pyrus communis L.) leaves. Plant Cell Environ 17:1153–1160

    Article  CAS  Google Scholar 

  • Morales F, Belkhodja R, Abadía A, Abadía J (2000) Photosystem II efficiency and mechanisms of energy dissipation in iron-deficient, field-grown pear trees (Pyrus communis L.). Photosynth Res 63:9–21

    Article  PubMed  CAS  Google Scholar 

  • Morales F, Grasa R, Abadía A, Abadía J (1998b) Iron chlorosis paradox in fruit trees. J Plant Nutr 21:815–825

    CAS  Google Scholar 

  • Osmond CB, Björkman O (1972) Simultaneous measurements of oxygen effects on net photosynthesis and glycolate metabolism in C3 and C4 species of Atriplex. Carnegie Inst Washington Yearb 71:141–148

    Google Scholar 

  • Osmond CB, Björkman O, Anderson DJ (1980) Physiological processes in plant ecology. Toward a synthesis with Atriplex. (Ecological studies, vol. 36). Springer, Berlin Heidelberg New York

    Google Scholar 

  • Pérez C, Val J, Monge E (1995) Effects of iron deficiency on photosynthetic structures in peach (Prunus persica L. Batsch) leaves. In: Abadía J (ed) Iron nutrition in soils and plants. Kluwer Academic Publishers, Dordrecht, pp 183–189

    Google Scholar 

  • Pettigrew WT, Hesketh JD, Peters DB, Woolley JT (1990) A vapor pressure deficit effect on crop canopy photosynthesis. Photosynth Res 24:27–34

    Article  Google Scholar 

  • Platt-Aloia KA, Thomson WW, Terry N (1983) Changes in plastid ultrastructure during iron nutrition-mediated chloroplast development. Protoplasma 114:85–92

    Article  Google Scholar 

  • Polivka T, Zigmantas D, Sundström V, Formaggio E, Cinque G, Bassi R (2002) Carotenoid S1 state in a recombinant light-harvesting complex of photosystem II. Biochemistry 41:439–450

    Article  PubMed  CAS  Google Scholar 

  • Powles SB, Critchley C (1980) Effect of light intensity during growth on photoinhibition of intact attached bean leaflets. Plant Physiol 65:1181–1187

    PubMed  CAS  Google Scholar 

  • Römheld V (1997) The chlorosis paradox: Fe inactivation in leaves as a secondary event in Fe deficiency chlorosis. In: 9th International Symposium on Iron Nutrition and Interactions in Plants, Hohenheim, Stuttgart, Germany, p. 10 (Abstr.)

  • Sage RF, Sharkey TD, Seemann JR (1990) Regulation of ribulose-1,5-bisphosphate carboxylase activity in response to light intensity and CO2 in the C3 annuals Chenopodium album L. and Phaseolus vulgaris L. Plant Physiol 94:1735–1742

    PubMed  CAS  Google Scholar 

  • Sanz M, Cavero J, Abadía J (1992) Iron chlorosis in the Ebro river basin, Spain. J Plant Nutr 15:1971–1981

    CAS  Google Scholar 

  • Spiller S, Terry N (1980) Limiting factors in photosynthesis. II. Iron stress diminishes photochemical capacity by reducing the number of photosynthetic units. Plant Physiol 65:121–125

    PubMed  CAS  Google Scholar 

  • Stocking CR (1975) Iron deficiency and the structure and physiology of maize chloroplasts. Plant Physiol 55:626–631

    PubMed  CAS  Google Scholar 

  • Susín S, Abían J, Peleato ML, Sánchez-Baeza J, Abadía A, Gelpí E, Abadía J (1994) Flavin excretion from iron deficient sugar beet (Beta vulgaris L.). Planta 193:514–519

    Article  Google Scholar 

  • Tagliavini M, Rombolà AD (2001) Iron deficiency and chlorosis in orchard and vineyard ecosystems. Eur J Agron 15:71–92

    Article  CAS  Google Scholar 

  • Taylor SE, Terry N (1984) Limiting factors in photosynthesis. V. Photochemical energy supply colimits photosynthesis at low values of intracellular CO2 concentration. Plant Physiol 75:82–86

    PubMed  CAS  Google Scholar 

  • Taylor SE, Terry N (1986) Variation in photosynthetic electron transport capacity and its effect on the light modulation of ribulose bisphosphate carboxylase. Photosynth Res 8:249–256

    Article  CAS  Google Scholar 

  • Taylor SE, Terry N, Huston RP (1982) Limiting factors in photosynthesis. III. Effects of iron nutrition on the activities of three regulatory enzymes of photosynthetic carbon metabolism. Plant Physiol 70:1541–1543

    PubMed  CAS  Google Scholar 

  • Tenhunen JD, Lange OL, Braun M, Meyer A, Lösch R, Pereira JS (1980) Midday stomatal closure in Arbutus unedo leaves in a natural macchia and under simulated habitat conditions in an environmental chamber. Oecologia 47:365–367

    Article  Google Scholar 

  • Tenhunen JD, Lange OL, Gebel J, Beyschlag W, Weber JA (1984) Changes in photosynthetic capacity, carboxylation efficiency, and CO2 compensation point associated with stomatal closure and midday depression of net CO2 exchange of leaves of Quercus suber. Planta 162:193–203

    Article  CAS  Google Scholar 

  • ter Braak CJF (1994) Canonical community ordination. Part 1: Basic theory and linear methods. Écoscience 1:127–140

    Google Scholar 

  • ter Braak CJF, Šmilauer P (1998) Canoco reference manual and user’s guide to Canoco for Windows: Software for canonical community ordination (version 4.5). Microcomputer Power, Ithaca

    Google Scholar 

  • Terry N (1980) Limiting factors in photosynthesis. I. Use of iron stress to control photochemical capacity in vivo. Plant Physiol 65:114–120

    PubMed  CAS  Google Scholar 

  • Terry N (1983) Limiting factors in photosynthesis. I. Iron stress mediated changes in light harvesting and electron transport capacity and its effect on photosynthesis in vivo. Plant Physiol 71:855–869

    PubMed  CAS  Google Scholar 

  • Terry N, Abadía J (1986) Function of iron in chloroplasts. J Plant Nutr 9:609–646

    CAS  Google Scholar 

  • Terry N, Low G (1982) Leaf chlorophyll content and its relation to the intercellular localization of iron. J Plant Nutr 5:301–310

    Article  CAS  Google Scholar 

  • Thomas D, Eamus D, Bell D (1999) Optimization theory of stomatal behaviour II. Stomatal responses of several tree species of north Australia to changes in light, soil and atmospheric water content and temperature. J Exp Bot 50:391–400

    Article  Google Scholar 

  • Thompson WA, Huang LK, Kriedemann PE (1992) Photosynthetic response to light and nutrients in sun-tolerant and shade-tolerant rainforest trees. II. Leaf gas exchange and component processes of photosynthesis. Aust J Plant Physiol 19:19–42

    CAS  Google Scholar 

  • Vadell J, Socías FX, Medrano H (1993) Light dependency of carboxylation efficiency and ribulose-1,5-bisphosphate carboxylase activation in Trifolium subterraneum L. leaves. J Exp Bot 44:1757–1762

    CAS  Google Scholar 

  • Winder T, Nishio J (1995) Early iron deficiency stress response in leaves of sugar beet. Plant Physiol 108:1487–1494

    Article  PubMed  CAS  Google Scholar 

  • Woodrow IE, Berry JA (1988) Enzymatic regulation of photosynthetic CO2 fixation in C3 plants. Annu Rev Plant Physiol Plant Mol Biol 39:533–594

    CAS  Google Scholar 

  • Zhang N, Kallis RP, Ewy RG, Portis AR (2002) Light modulation of Rubisco in Arabidopsis requires a capacity for redox regulation of the larger Rubisco activase isoform. Proc Nat Acad Sci USA 99:3330–3334

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Aurora Poc for her excellent technical assistance in growing the sugar beet plants, Dr. E. Gil-Pelegrín for use of equipment, Dr. J. Flexas for his advices in the analysis of the A/C i response curves, and Dr. J.J. Camarero for his help with the PCA analysis. This work was supported by grants AGL 2003-01999 to A.A., AGL 2004-00194, and Isafruit from the Commission of European Communities to J.A. A.L. was recipient of a predoctoral fellowship from the Spanish Institute of International Cooperation (ICI-MAE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fermín Morales.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larbi, A., Abadía, A., Abadía, J. et al. Down co-regulation of light absorption, photochemistry, and carboxylation in Fe-deficient plants growing in different environments. Photosynth Res 89, 113–126 (2006). https://doi.org/10.1007/s11120-006-9089-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-006-9089-1

Keywords

Navigation