Skip to main content

Photoinhibition and Photoprotection under Nutrient Deficiencies, Drought and Salinity

  • Chapter
Photoprotection, Photoinhibition, Gene Regulation, and Environment

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 21))

Summary

Some of the more frequent abiotic stresses in plants are limited availability of nutrients and water, as well as salinity. All these situations occur both in natural habitats and in crops. Stressed plants often experience decreases in photosynthetic rates, whereas they still harvest sunlight. Environmental stresses such as those may decrease the efficiency with which solar energy is harvested and used by plants in photosynthetic reactions. This feature is what the scientific community has often called photoinhibition. Some researchers tacitly assume that photoinhibition may result from photodamage, whereas others believe that it is more the integration of a series of regulatory and protective adjustments. The aim of this review is to summarize the current knowledge concerning photoinhibitionand photoprotection-related processes under nutrient deficiencies, drought, and salinity stress, and to discuss the role that photoinhibition could play under such environmental stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abadía A, Belkhodja R, Morales F and Abadía J (1999) Effects of salinity on the photosynthetic pigment composition of barley (Hordeum vulgare L.) grown under a triple-line-source sprinkler system in the field. J Plant Physiol 154: 392–400

    Google Scholar 

  • Abadía J and Abadía A (1993) Iron and plant pigments. In: Barton LL, Hemming BC (eds) Iron Chelation in Plants and Soil Microorganisms, pp 327–344. Academic Press, San Diego, California

    Google Scholar 

  • Abadía J, Morales F and Abadía A (1999) Photosystem II efficiency in low chlorophyll, iron-deficient leaves. Plant Soil 215: 183–192

    Google Scholar 

  • Adams WW III, Zarter CR, Ebbert V and Demmig-Adams B (2004) Photoprotective strategies of overwintering evergreens. BioScience 54: 41–49

    Google Scholar 

  • Adams WW III, Zarter CR, Mueh KE, Amiard V and Demmig- Adams B (2005) Energy dissipation and photoinhibition: a continuum of photoprotection. In: Demmig-Adams B, Adams WW III and Mattoo AK (eds) Photoprotection, Photoinhibition, Gene Regulation, and Environment, pp 49–64. Springer, Dordrecht

    Google Scholar 

  • Agbariah K-T and Roth-Bejerano N (1990) The effect of blue light on energy levels in epidermal strips. Physiol Plant 78: 100–104

    CAS  Google Scholar 

  • Almansa MS, Hernáandez JA, Jiméenez A, Botella MA and Sevilla F (2002) Effect of salt stress on the superoxide dismutase activity in leaves of Citrus limonum in different rootstockscion combinations. Biol Plant 45: 545–549

    CAS  Google Scholar 

  • Alonso R, Elvira S, Castillo FJ and Gimeno BS (2001) Interactive effects of ozone and drought stress on pigments and activities of antioxidative enzymes in Pinus halepensis. Plant Cell Environ 24: 905–916

    CAS  Google Scholar 

  • AÁ lvarez-Fernaández A, Paniagua P, Abadía J and Abadía A (2003) Effects of Fe deficiency chlorosis on yield and fruit quality in peach (Prunus persica L. Batsch). J Agric Food Chem 51: 5738–5744

    CAS  Google Scholar 

  • Andrizhiyevskaya EG, Schwabe TME, Germano M, D’Haene S, Kruip J, van Grondelle R and Dekker JP (2002) Spectroscopic properties of PSI-IsiA supercomplexes from the cyanobacterium Synechococcus PCC 7942. Biochim Biophys Acta 1556: 265–272

    PubMed  CAS  Google Scholar 

  • Arulanantham AR, RaoMandTerry N (1990) Limiting factors in photosynthesis. VI. Regeneration of ribulose 1,5-bisphosphate limits photosynthesis at low photochemical capacity. Plant Physiol 93: 1466–1475

    PubMed  CAS  Google Scholar 

  • Balachandran S and Osmond CB (1994) Susceptibility of tobacco leaves to photoinhibition following infection with two strains of tobacco mosaic virus under different light and nitrogen nutrition regimes. Plant Physiol 104: 1051–1057

    PubMed  CAS  Google Scholar 

  • Barker DH, Adams WW III, Demmig-Adams B, Logan BA, Verhoeven AS and Smith SD (2002) Nocturnally retained zeaxanthin does not remain engaged in a state primed for energy dissipation during the summer in two Yucca species growing in the Mojave Desert. Plant Cell Environ 25: 95–103

    CAS  Google Scholar 

  • Baroli I, Do AD, Yamane T and Niyogi KK (2003) Zeaxanthin accumulation in the absence of a functional xanthophyll cycle protects Chlamydomonas reinhardtii from photooxidative stress. Plant Cell 15: 992–1008

    PubMed  CAS  Google Scholar 

  • Bartoskova H, Komenda J and Naus J (1999) Functional changes of photosystem II in the moss Rhizomnium punctatum (Hedw.) induced by different rates of dark desiccation. J Plant Physiol 154: 597–604

    CAS  Google Scholar 

  • Basile B, Reidel EJ, Weinbaum SA and DeJong TM (2003) Leaf potassium concentration, CO2 exchange and light interception in almond trees (Prunus dulcis (Mill) D.A. Webb). Sci Hort 98: 185–194

    Google Scholar 

  • Bednarz CW and Oosterhuis DM (1999) Physiological changes associated with potassium deficiency in cotton. J Plant Nutr 22: 303–313

    Google Scholar 

  • Behrenfeld MJ, Bale AJ, Kolber ZS, Aiken J and Falkowski PG (1996) Confirmation of iron limitation of phytoplankton photosynthesis in the equatorial Pacific Ocean. Nature 383: 508–511

    CAS  Google Scholar 

  • Belkhodja R, Morales F, Abadía A, Góomez-Aparisi J and Abadía J (1994) Chlorophyll fluorescence as a possible tool for salinity tolerance screening in barley (Hordeum vulgare L.). Plant Physiol 104: 667–673

    PubMed  CAS  Google Scholar 

  • Belkhodja R, Morales F, Quílez R, L’opez-Mill’an AF, Abadía A and Abadía J (1998) Iron deficiency causes changes in chlorophyll fluorescence due to the reduction in the dark of the Photosystem II acceptor side. Photosynth Res 56: 265– 276

    CAS  Google Scholar 

  • Belkhodja R, Morales F, Abadía A, Medrano H and Abadía J (1999) Effects of salinity on chlorophyll fluorescence and photosynthesis of barley (Hordeum vulgare L.) grown under a triple-line-source sprinkler system in the field. Photosynthetica 36: 375–387

    CAS  Google Scholar 

  • Bergmann T, Richardson TL, Paerl HW, Pinckney JL and Schofield O (2002) Synergy of light and nutrients on the photosynthetic efficiency of phytoplankton populations from the Neuse River Estuary, North Carolina. J Plankton Res 24: 923–933

    CAS  Google Scholar 

  • Bertamini M, MuthuchelianKand Nedunchezhian N (2002) Iron deficiency induced changes on the donor side of PS II in field grown grapevine (Vitis vinifera L. cv. Pinot noir) leaves. Plant Sci 162: 599–605

    CAS  Google Scholar 

  • Bibby TS, Nield J and Barber J (2001a) Iron deficiency induces the formation of an antenna ring around trimeric photosystem I in cyanobacteria. Nature 412: 743–745

    CAS  Google Scholar 

  • Bibby TS, Nield J and Barber J (2001b) Three-dimensional model and characterization of the iron stress-induced CP43’- photosystem I supercomplex isolated from the cyanobacterium Synechocystis PCC 6803. J Biol Chem 276: 43246–43252

    CAS  Google Scholar 

  • Biehler K and Fock H (1996) Evidence for the contribution of the Mehler-peroxidase reaction in dissipating excess electrons in drought-stressed wheat. Plant Physiol 112: 265–272

    PubMed  CAS  Google Scholar 

  • BiswalB, Smith AJ and Rogers LJ (1994) Changes in carotenoids but not in D1 protein in response to nitrogen depletion and recovery in a cyanobacterium. FEMS Microbiol Lett 116: 341–347

    CAS  Google Scholar 

  • Björkman O (1987) High-irradiance stress in higher plants and interaction with other stress factors. In: Biggins J (ed) Progress in Photosynthesis Research, Vol 4, pp 11–18. Martinus Nijhoff, Dordrecht

    Google Scholar 

  • Björkman O and Demmig-Adams B (1994) Regulation of photosynthetic light energy capture, conversion, and dissipation in leaves of higher plants. In: Schulze E-D, Caldwell MM (eds) Ecophysiology of Photosynthesis, pp 17–47. Springer-Verlag, Berlin

    Google Scholar 

  • Boekema EJ, Hifney A, Yakushevska AE, Piotrowski M, Keegstra W, Berry S, Michel KP, Pistorius EK and Kruip J (2001) A giant chlorophyll-protein complex induced by iron deficiency in cyanobacteria. Nature 412: 745–748

    PubMed  CAS  Google Scholar 

  • Boo Y and Jung J (1999) Water deficit-induced oxidative stress and antioxidative defenses in rice plants. J Plant Physiol 155: 255–261

    CAS  Google Scholar 

  • Broetto F, Lüuttge U and Ratajczak R (2002) Influence of light intensity and salt-treatment on mode of photosynthesis and enzymes of the antioxidative response system of Mesembryanthemum crystallinum. Funct Plant Biol 29: 13–23

    CAS  Google Scholar 

  • Brugnoli E and Björkman O (1992) Growth of cotton under continuous salinity stress: influence on allocation pattern, stomatal and non-stomatal components of photosynthesis and dissipation of excess light energy. Planta 187: 335–347

    CAS  Google Scholar 

  • Brugnoli E and Lauteri M (1991) Effects of salinity on stomatal conductance, photosynthetic capacity, and carbon isotope discrimination of salt tolerant (Gossypium hirsutum L.) and salt sensitive (Phaseolus vulgaris L.)C3 non-halophytes. Plant Physiol 95: 628–635

    PubMed  CAS  Google Scholar 

  • Bukhow NG and Carpentier R (2004) Effects of water stress on the photosynthetic efficiency of plants. In: Papageorgiou GC and Govindjee (eds) Chlorophyll a Fluorescence: A Signature of Photosynthesis, in press. Springer, Berlin

    Google Scholar 

  • Bungard RA, McNeil D and Morton JD (1997) Effects of nitrogen on the photosynthetic apparatus of Clematis vitalba grown at several irradiances. Aust J Plant Physiol 24: 205–214

    CAS  Google Scholar 

  • Bungard RA, Press MC and Scholes JD (2000) The influence of nitrogen on rain forest dipterocarp seedlings exposed to a large increase in irradiance. Plant Cell Environ 23: 1183–1194

    Google Scholar 

  • Canaani O and Havaux M (1990) Evidence for a biological role in photosynthesis for cytocrome b-559, a component of Photosystem II reaction center. Proc Natl Acad Sci USA 87: 9295–9299

    PubMed  CAS  Google Scholar 

  • Castillo FJ (1996) Antioxidative protection in the inducible Cam plant Sedum album L. following the imposition of severewater stress and recovery. Oecologia 107: 469–477

    Google Scholar 

  • Centritto M, Loreto F and Chartzoulakis K (2003) The use of low [CO2] to estimate diffusional and non-diffusional limitations of photosynthetic capacity of salt-stressed olive saplings. Plant Cell Environ 26: 585–594

    Google Scholar 

  • Chaves MM, Pereira JS, Maroco J, Rodrigues ML, Ricardo CPP, Osóorio ML, Carvalho I, Faria T and Pinheiro C (2002) How plants cope with water stress in the field. Photosynthesis and growth. Ann Bot 89: 907–916

    PubMed  CAS  Google Scholar 

  • Chen L, Fuchigami LH and Breen PJ (2001) The relationship between Photosystem II efficiency and quantum yield for CO 2 assimilation is not affected by nitrogen content in apple leaves. J Exp Bot 52: 1865–1872

    Google Scholar 

  • Chen YZ, Murchie EH, Hubbart S, Horton P and Peng SB (2003) Effects of season-dependent irradiance levels and nitrogen-deficiency on photosynthesis and photoinhibition in field-grown rice (Oryza sativa). Physiol Plant 117: 343–351

    PubMed  CAS  Google Scholar 

  • Close DC, Beadle CL and Hovenden MJ (2003) Interactive effects of nitrogen and irradiance on sustained xanthophyll cycle engagement in Eucalyptus nitens leaves during winter. Oecologia 134: 32–36

    PubMed  Google Scholar 

  • Da Matta FM, Maestri M and Barros RS (1997) Photosynthetic performance of two coffee species under drought. Photosynthetica 34: 257–264

    Google Scholar 

  • Dannehl H, Herbik A and Godde D (1995) Stress-induced degradation of the photosynthetic apparatus is accompanied by changes in thylakoid protein turnover and phosphorylation. Physiol Plant 93: 179–186

    CAS  Google Scholar 

  • Dannehl H, Wietoska H, Heckmann H and Godde D (1996) Changes in D1-protein turnover and recovery of photosystem II activity precede accumulation of chlorophyll in plants after release from mineral stress. Planta 199: 34–42

    CAS  Google Scholar 

  • Delfine S, Alvino A, Villani MC and Loreto F (1999) Restrictions to CO2 conductance and photosynthesis in spinach leaves recovering from salt stress. Plant Physiol 119: 1101–1106

    PubMed  CAS  Google Scholar 

  • Demmig B,Winter K, Krüuger A and Czygan F-C (1988) Zeaxanthin and the heat dissipation of excess light energy in Nerium oleander exposed to a combination of high light and water stress. Plant Physiol 87: 17–24

    PubMed  CAS  Google Scholar 

  • Demmig-Adams B and Adams WW III (1992) Photoprotection and other responses of plants to high light stress. Annu Rev Plant Physiol Plant Mol Biol 43: 599–626

    CAS  Google Scholar 

  • Demmig-Adams B and Adams WW III (1996) Xanthophyll cycle and light stress in nature: uniform response to excess direct sunlight among higher plant species. Planta 198: 460–470

    CAS  Google Scholar 

  • Demmig-Adams B and Adams WW III (2002) Antioxidants in photosynthesis and human nutrition. Science 298: 2149–2153

    PubMed  CAS  Google Scholar 

  • Demmig-Adams B and Adams WW III (2003) Photoinhibition. In: Thomas B, Murphy D and Murray B (eds) Encyclopedia of Applied Plant Science, pp 707–714. Academic Press, New York

    Google Scholar 

  • Demmig-Adams B, Adams WW III, Barker DH, Logan BA, Bowling DR and Verhoeven AS (1996a) Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. Physiol Plant 98: 253–264

    CAS  Google Scholar 

  • Demmig-Adams B, Gilmore AM and Adams WW III (1996b) In vivo functions of carotenoids in higher plants. FASEB J 10: 403–412

    Google Scholar 

  • Demmig-Adams B, Ebbert V, Zarter CR and Adams WW III (2005) Characteristics and species-dependent employment of flexible versus sustained thermal dissipation and photoinhibition. In: Demmig-Adams B, Adams WW III and Mattoo AK (eds) Photoprotection, Photoinhibition, Gene Regulation, and Environment, pp 39–48. Springer, Dordrecht

    Google Scholar 

  • Downs CA, Ryan SL and Heckathorn SA (1999) The chloroplast small heat-shock protein: Evidence for a general role in protecting photosystem II against oxidative stress and photoinhibition. J Plant Physiol 155: 488–496

    CAS  Google Scholar 

  • Dubey RS (1997) Photosynthesis in plants under stressful conditions. In: Pessarakli M (ed) Handbook of Photosynthesis, pp 859–875. Marcel Dekker Inc, New York

    Google Scholar 

  • Duncan J, Bibby T, Tanaka A and Barber J (2003) Exploring the ability of chlorophyll b to bind to the CP43’ protein induced under iron deprivation in a mutant of Synechocystis PCC 6803 containing the cao gene. FEBS Lett 541: 171– 175

    PubMed  CAS  Google Scholar 

  • Eastman PAK, Rashid A and Camm EL (1997) Changes of the photosystem 2 activity and thylakoid proteins in spruce seedlings during water stress. Photosynthetica 34: 201– 210

    CAS  Google Scholar 

  • Egilla JN and Davies FT Jr (1995) Response of Hibiscus rosasinensis L. to varying levels of potassium fertilization: growth, gas exchange and mineral concentration. J Plant Nutr 18: 1765–1783

    CAS  Google Scholar 

  • Epron D and Dreyer E (1993) Photosynthesis of oak leaves under water stress: maintenance of high photochemical efficiency of photosystem II and occurrence of non-uniform CO2 assimilation. Tree Physiol 13: 107–117

    PubMed  CAS  Google Scholar 

  • Evans JR and Terashima I (1987) Effects of nitrogen nutrition on electron transport components and photosynthesis in spinach. Aust J Plant Physiol 14: 59–68

    CAS  Google Scholar 

  • Falkowski PG, Behrenfeld M and Kolber Z (1995) Variations in photochemical energy conversion efficiency in oceanic phytoplankton: scaling from reaction center to the global ocean. In: Mathis P (ed) Photosynthesis: from Light to Biosphere, Vol V, pp 755–759. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • FAO (1988) FAO-UNESCO Soil map of the world, revised legend. FAO, Rome

    Google Scholar 

  • Faria T, Silv’erio D, Breia E, Cabral R, Abadía A, Abadía J, Pereira JS and Chaves MM (1998) Differences in the response of carbon assimilation to summer stress (water deficits, high light and temperature) in four Mediterranean tree species. Physiol Plant 102: 419–428

    CAS  Google Scholar 

  • Ferrar PJ and Osmond CB (1986) Nitrogen supply as a factor influencing photoinhibition and photosynthetic acclimation after transfer of shade-grown Solanum dulcamara to bright light. Planta 168: 563–570

    CAS  Google Scholar 

  • Ferraro F, Castagna A, Soldatini GF and Ranieri A (2003)Tomato (Licopersicon esculentum M.) T3238FER and T3238fer genotypes. Influence of different iron concentrations on thylakoid pigment and protein composition. Plant Sci 164: 783– 792

    CAS  Google Scholar 

  • Field C and Mooney H (1986) The photosynthesis-nitrogen relationship in wild plants. In: Givnish GT (ed) On the Economy of Plant Form and Function, pp 25–55. Cambridge University Press, London

    Google Scholar 

  • Flexas J and Medrano H (2002) Energy dissipation in C3 plants under drought. Funct Plant Biol 29: 1209–1215

    CAS  Google Scholar 

  • Flexas J, Escalona JM and Medrano H (1998) Down-regulation of photosynthesis by drought under field conditions in grapevine leaves. Aust J Plant Physiol 25: 893–900

    Google Scholar 

  • Flexas J, Escalona JM and Medrano H (1999) Water stress induces different levels of photosynthesis and electron transport rate regulation in grapevines. Plant Cell Environ 22: 39–48

    Google Scholar 

  • Flexas J, Bota J, Escalona JM, Sampóol B and Medrano H (2002) Effects of drought on photosynthesis in grapevines under field conditions: an evaluation of stomatal and mesophyll limitations. Funct Plant Biol 29: 461–471

    Google Scholar 

  • Fork DC and Herbert SK (1993) Electron transport and photophosphorylation by Photosystem I in vivo in plants and cyanobacteria. Photosynth Res 36: 149–168

    CAS  Google Scholar 

  • Foyer CH, Lelandais M and Kunert KJ (1994) Photooxidative stress in plants. Physiol Plant 92: 696–717

    CAS  Google Scholar 

  • Foyer CH, Trebst A and Noctor G (2005) Signaling and integration of defense functions of tocopherol, ascorbate, and glutathione. In: Demmig-Adams B, Adams WW III and Mattoo AK (eds) Photoprotection, Photoinhibition, Gene Regulation, and Environment, pp 241–268. Springer, Dordrecht

    Google Scholar 

  • García-Plazaola JI and Becerril JM (2000) Effects of drought on photoprotective mechanisms in European beech (Fagus sylvatica L.) seedlings from different provenances. Trees 14: 485–490

    Google Scholar 

  • Geider RJ and La Roche J (1994) The role of iron in phytoplankton photosynthesis, and the potential for iron-limitation of primary productivity in the sea. Photosynth Res 39: 275–301

    CAS  Google Scholar 

  • Geider RJ, Laroche J, Greene RM and Olaizola M (1993) Response of the photosynthetic apparatus of Phaeodactylum tricornutum (Bacillariophyceae) to nitrate, phosphate, or iron starvation. J Phycol 29: 755–766

    CAS  Google Scholar 

  • Giardi MT, Cona A, Geiken B, Kucera T, Masojidek J and Mattoo AK (1996) Long-term drought stress induces structural and functional reorganization of photosystem II. Planta 199: 118–125

    CAS  Google Scholar 

  • Giardi MT, Masojidek J and Godde D (1997) Effects of abiotic stresses on the turnover of the D-1 reaction centre II protein. Physiol Plant 101: 635–642

    CAS  Google Scholar 

  • Gilmore AM, Matsubara S, Ball MC, Barker DH and Itoh S (2003) Excitation energy flow at 77 K in the photosynthetic apparatus of overwintering evergreens. Plant Cell Environ 26: 1021–1034

    Google Scholar 

  • Godde D and Dannehl H (1994) Stress-induced chlorosis and increase in D1-protein turnover precede photoinhibition in spinach suffering under magnesium/sulphur deficiency. Planta 195: 291–300

    CAS  Google Scholar 

  • Godde D and Hefer M (1994) Photoinhibition and lightdependent turnover of the D1 reaction-centre polypeptide of photosystem-II are enhanced by mineral-stress conditions. Planta 193: 290–299

    CAS  Google Scholar 

  • Góomez JM, Hernáandez JA, Jiméenez A, del Río LA and Sevilla F (1999) Differential response of antioxidative enzymes of chloroplasts and mitochondria to long-termNaCl stress of pea plants. Free Radical Res 31 (Suppl S): S11–S18

    Google Scholar 

  • Grassi G, Colom MR and Minotta G (2001) Effects of nutrient supply on photosynthetic acclimation and photoinhibition of one-year-old foliage of Picea abies. Physiol Plant 111: 245–254

    CAS  Google Scholar 

  • Gratani L and Ghia E (2002) Adaptive strategy at the leaf level of Arbutus unedo L. to cope with Mediterranean climate. Flora 197: 275–284

    Google Scholar 

  • Greene RM, Geider RJ, Kolber Z and Falkowski PG (1992) Ironinduced changes in light harvesting and photochemical energy conversion processes in eukaryotic marine algae. Plant Physiol 100: 565–575

    PubMed  CAS  Google Scholar 

  • Gueta-Dahan Y, Yaniv Z, Zilinskas BA, Benhayyim G (1997) Salt and oxidative stress: similar and specific responses and their relation to salt tolerance in Citrus. Planta 203: 460-469

    PubMed  CAS  Google Scholar 

  • Guikema JA (1985) Fluorescence induction characteristics of Anacystis nidulans during recovery from iron deficiency. J Plant Nutr 8: 891–908

    CAS  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu, JK and Bohnert HG (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51: 463-499

    PubMed  CAS  Google Scholar 

  • Haupt-Herting S, Klug K and Fock H (2001) A new approach to measure gross CO2 fluxes in leaves. Gross CO2 assimilation, photorespiration, and mitochondrial respiration in the light in tomato under drought stress. Plant Physiol 126: 388–396

    PubMed  CAS  Google Scholar 

  • Havaux M and Niyogi KK (1999) The violaxanthin cycle protects plants from photooxidative damage by more than one mechanism. Proc Natl Acad Sci USA 96: 8762–8767

    PubMed  CAS  Google Scholar 

  • He J, Chee CW and Goh CJ (1996) "Photoinhibition" of Heliconia under natural tropical conditions: the importance of leaf orientation for light interception and leaf temperature. Plant Cell Environ 19: 1238–1248

    Google Scholar 

  • He J, Tan LP and Goh CJ (2000) Alleviation of photoinhibition in Heliconia grownunder tropical natural conditions after release from nutrient stress. J Plant Nutr 23: 181–196

    CAS  Google Scholar 

  • He JX, Wang J and Liang HG (1995) Effects of water stress on photochemical function and protein metabolism of photosystem II in wheat leaves. Physiol Plant 93: 771–777

    CAS  Google Scholar 

  • Henley WJ, Levavasseur G, Franklin LA, Osmond CB and Ramus J (1991) Photoacclimation and photoinhibition in Ulva rotundata as influenced by nitrogen availability. Planta 184: 235–243

    CAS  Google Scholar 

  • Herbinger K, Tausz M,Wonisch A, Soja G, Sorger A and Grill D (2002) Complex interactive effects of drought and ozone stress on the antioxidant defence systems of two wheat cultivars. Plant Physiol Biochem 40: 691–696

    CAS  Google Scholar 

  • Hernáandez JA, Jiméenez A, Mullineaux P and Sevilla F (2000) Tolerance of pea (Pisum sativum L.) to long term salt stress is associated with induction of antioxidant defences. Plant Cell Environ 23: 853–862

    CAS  Google Scholar 

  • Iglesias DJ, Lliso I, Tadeo FR and Talóon M (2002) Regulation of photosynthesis through source:sink imbalance in citrus is mediated by carbohydrate content in leaves. Physiol Plant 116: 563–572

    CAS  Google Scholar 

  • Iturbe-Ormaetxe I, Mor’an JF, Arrese-Igor C, Gogorcena Y, Klucas RV and Becana M (1995) Activated oxygen and antioxidant defences in iron-deficient pea plants. Plant Cell Environ 18: 421–429

    CAS  Google Scholar 

  • Jiang CD, Gao HY and Zou Q (2001) Enhanced thermal energy dissipation depending on xanthophyll cycle and D1 protein turnover in iron-deficient maize leaves under high irradiance. Photosynthetica 39: 269–274

    CAS  Google Scholar 

  • KaoW-Y and Tsai T-T (1998) Tropic leaf movements, photosynthetic gas exchange, leaf δ13C and chlorophyll a fluorescence of three soybean species in response towater availability. Plant Cell Environ 21: 1055–1062

    CAS  Google Scholar 

  • Kato MC, Hikosaka K and Hirose T (2002) Photoinactivation and recovery of photosystem II in Chenopodium album leaves grown at different levels of irradiance and nitrogen availability. Funct Plant Biol 29: 787–795

    CAS  Google Scholar 

  • Katona E, Neimais S, Schönknechst G and Heber U (1992) Photosystem I-dependent cyclic electron transport is important in controlling Photosystem II activity in leaves under water stress. Photosynth Res 34: 449–469

    CAS  Google Scholar 

  • Khamis S, Lamaze T, Lemoine Y and Foyer CH (1990) Adaptation of the photosynthetic apparatus in maize leaves as a result of nitrogen limitation. Relationships between electron transport and carbon assimilation. Plant Physiol 94: 1436–1443

    PubMed  CAS  Google Scholar 

  • Kilb B, Wietowska K and Godde D (1996) Changes in the expression of photosynthetic genes precede the loss of photosynthetic activities and chlorophyll when glucose is supplied to mature spinach leaves. Plant Sci 114: 225–235

    Google Scholar 

  • Kingsbury RW, Epstein E and Pearcy RW (1984) Physiological responses to salinity in selected lines of wheat. Plant Physiol 74: 417–423

    Article  PubMed  CAS  Google Scholar 

  • Kurepa J, Bueno P, Kampfenkel K, Van MontaguMand Vandenbulcke M (1997) Effects of iron deficiency on iron superoxide dismutase expression in Nicotiana tabacum. Plant Physiol Biochem 35: 467–474

    CAS  Google Scholar 

  • Kyparissis A, Drilias P and Manetas Y (2000) Seasonal fluctuations in photoprotective (xanthophyll cycle) and photoselective (chlorophylls) capacity in eight Mediterranean plant species belonging to two different growth forms. Aust J Plant Physiol 27: 265–272

    CAS  Google Scholar 

  • Larbi A, Abadía A, Morales F and Abadía J (2004) Fe resupply to Fe-deficient sugar beet plants leads to rapid changes in the violaxanthin cycle and other photosynthetic characteristics without significant de novo chlorophyll synthesis. Photosynth Res 79: 59–69

    PubMed  CAS  Google Scholar 

  • Larcher W, Wagner J and Thammathaworn A (1990) Effects of superimposed temperature stress on in vivo chlorophyll fluorescence of Vigna unguiculata under saline stress. J Plant Physiol 136: 92–102

    CAS  Google Scholar 

  • Lawlor DW (1995) The effects ofwater deficit on photosynthesis. In: SmirnoffM(ed) Environment and Plant Metabolism. Flexibility and Acclimation, pp 129–160. BIOS Scientific, Oxford

    Google Scholar 

  • Le Roux X, Walcroft AS, Daudet FA, Sinoquet H, Chaves MM, Rodrigues A and Osorio L (2001) Photosynthetic light acclimation in peach leaves: importance of changes in mass:area ratio, nitrogen concentration, and leaf nitrogen partitioning. Tree Physiol 21: 377–386

    PubMed  CAS  Google Scholar 

  • Lee DH, Kim YS and Lee CB (2001) The inductive responses of the antioxidant enzymes by salt stress in the rice (Oryza sativa L.). J Plant Physiol 158: 737–745

    CAS  Google Scholar 

  • Logan BA, Demmig-Adams B, Rosenstiel TN and Adams WW III (1999) Effect of nitrogen limitation on foliar antioxidants in relationship to other metabolic characteristics. Planta 209: 213–220

    PubMed  CAS  Google Scholar 

  • Loggini B, Scartazza A, Brugnoli E and Navari-Izzo F (1999) Antioxidative defense system, pigment composition, and photosynthetic efficiency in two wheat cultivars subjected to drought. Plant Physiol 119: 1091–1099

    PubMed  CAS  Google Scholar 

  • Long SP and Baker NR (1986) Saline terrestrial environments. In: Baker NR and Long SP (eds) Photosynthesis in Contrasting Environments, pp 63–102. Elsevier, New York

    Google Scholar 

  • Long SP, Humphries S and Falkowski PG (1994) Photoinhibition of photosynthesis in nature. Annu Rev Plant Physiol Plant Mol Biol 45: 633–662

    CAS  Google Scholar 

  • Loreto F, Centritto M and Chartzoulakis K (2003) Photosynthetic limitations in olive cultivars with different sensitivity to salt stress. Plant Cell Environ 26: 595–601

    Google Scholar 

  • Lu CM and Zhang JH (1998) Effects ofwater stress on photosynthesis, chlorophyll fluorescence and photoinhibition in wheat plants. Aust J Plant Physiol 25: 883–892

    CAS  Google Scholar 

  • Lu CM and Zhang JH (2000) Photosystem II photochemistry and its sensitivity to heat stress in maize plants as affected by nitrogen deficiency. J Plant Physiol 157: 124–130

    CAS  Google Scholar 

  • Lu CM, Jiang G, Wang B and Kuang T (2003) Photosystem II photochemistry and photosynthetic pigment composition in salt-adapted halophyte Artimisia anethifolia grown under outdoor conditions. J Plant Physiol 160: 403–408

    PubMed  CAS  Google Scholar 

  • Luna C, de Luca M and Taleisnik E (2002) Physiological causes for decreased productivity under high salinity in Boma, a tetraploid Chloris gayana cultivar. II. Oxidative stress. Aust J Agr Res 53: 663–669

    Google Scholar 

  • Makino A and Osmond CB (1991) Effects of nitrogen nutrition on nitrogen partitioning between chloroplast and mitochondria in pea and wheat. Plant Physiol 96: 355–362

    PubMed  CAS  Google Scholar 

  • Marquardt J, Schultze A, Rosenkranz V and Wehrmeyer W (1999) Ultrastructure and photosynthetic apparatus of Rhodella violacea (Porphyridiales, Rhodophyta) grown under iron-deficient conditions. Phycol 38: 418–427

    Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic Press, London

    Google Scholar 

  • Masoni A, Ercoli L and Mariotti M (1996) Spectral properties of leaves deficient in iron, sulfur, magnesium and manganese. Agron J 88: 937–943

    Google Scholar 

  • Medrano H, Bota J, Abadía A, Sampóol B, Escalona JM and Flexas J (2002) Effects of drought on light-energy dissipation mechanisms in high-light-acclimated, field-grown grapevines. Funct Plant Biol 29: 1197–1207

    CAS  Google Scholar 

  • Medrano H, Parry MAJ, Socías X and Lawlor DW (1998) Long term water stress inactivates Rubisco in subterranean clover. Ann Appl Biol 131: 491–501

    Google Scholar 

  • Melkozernov AN, Bibby TS, Lin S, Barber J and Blankenship RE (2003) Time-resolved absorption and emission show that the CP43’ antenna ring of iron-stressed Synechocystis sp PCC6803 is efficiently coupled to the photosystem I reaction center core. Biochemistry 42: 3893–3903

    PubMed  CAS  Google Scholar 

  • Mishra SK, Subrahmanyam D and Singhal GS (1991) Interrelationship between salt and light stress on primary processes of photosynthesis. J Plant Physiol 138: 92–96

    CAS  Google Scholar 

  • Mishra SK, Dogra JVV and Singhal GS (1993) Influence of high salt on protein contents and lipid peroxidation and their interaction with high photon flux density on isolated chloroplasts of mustard. J Plant Biochem Biotech 2: 39– 42

    CAS  Google Scholar 

  • Morales F, Abadía A and Abadía J (1990) Characterization of the xanthophyll cycle and other photosynthetic pigment changes induced by iron deficiency in sugar beet (Beta vulgaris L.). Plant Physiol 94: 607–613

    PubMed  CAS  Google Scholar 

  • Morales F, Abadía A and Abadía J (1991) Chlorophyll fluorescence and photon yield of oxygen evolution in iron-deficient sugar beet (Beta vulgaris L.) leaves. Plant Physiol 97: 886–893

    PubMed  CAS  Google Scholar 

  • Morales F, Abadía A, Góomez-Aparisi J and Abadía J (1992) Effects of combined NaCl and CaCl2 salinity on photosynthetic parameters of barley grown in nutrient solution. Physiol Plant 86: 419–426

    CAS  Google Scholar 

  • Morales F, Belkhodja R, Abadía A and Abadía J (1994) Iron deficiency-induced changes in the photosynthetic pigment composition of field-grown pear (Pyrus communis L.) leaves. Plant Cell Environ 17: 1153–1160

    CAS  Google Scholar 

  • Morales F, Abadía A and Abadía J (1998) Photosynthesis, quenching of chlorophyll fluorescence and thermal energy dissipation in iron-deficient sugar beet leaves. Aust J Plant Physiol 25: 403–412

    Article  CAS  Google Scholar 

  • Morales F, Belkhodja R, Abadía A and Abadía J (2000a) Photosystem II efficiency and mechanisms of energy dissipation in iron-deficient, field-grown pear trees (Pyrus communis L.). Photosynth Res 63: 9–21

    CAS  Google Scholar 

  • Morales F, Belkhodja R, Abadía A and Abadía J (2000b) Energy dissipation in the leaves of Fe-deficient pear trees grown in the field. J Plant Nutr 23: 1709–1716

    CAS  Google Scholar 

  • Morales F, Moise N, Quílez R, Abadía A, Abadía J and Moya I (2001) Iron deficiency interrupts energy transfer from a disconnected part of the antenna to the rest of Photosystem II. Photosynth Res 70: 207–220

    PubMed  CAS  Google Scholar 

  • Morales F, Abadía A, Abadía J, Montserrat G and Gil-Pelegrín E (2002) Trichomes and photosynthetic pigment composition changes: responses of Quercus ilex subsp. ballota (Desf.) Samp. and Quercus coccifera L. to Mediterranean stress conditions. Trees 16: 504–510

    CAS  Google Scholar 

  • Mortvedt JJ (1991) Correcting iron deficiencies in annual and perennial plants: Present technologies and future prospects. Plant Soil 130: 273–279

    CAS  Google Scholar 

  • Moseley JL, Allinger T, Herzog S, Hoerth P, Wehinger E, Merchant S and Hippler M (2002) Adaptation to Fe-deficiency requires remodeling of the photosynthetic apparatus. EMBO J 21: 6709–6720

    PubMed  CAS  Google Scholar 

  • Müuller-Moul’e P, Havaux M and Niyogi KK (2003) Zeaxanthin deficiency enhances the high light sensitivity of an ascorbatedeficient mutant of Arabidopsis. Plant Physiol 133: 748–760

    Google Scholar 

  • Mullineaux PM, Karpinski S and Creissen GP (2005) Integration of signaling in antioxidant defenses. In: Demmig-Adams B, Adams WW III and Mattoo AK (eds) Photoprotection, Photoinhibition, Gene Regulation, and Environment, this volume. Springer, Berlin

    Google Scholar 

  • Munné-Bosch S and Alegre L (2000a) Changes in carotenoids, tocopherols and diterpenes during drought and recovery, and the biological significance of chlorophyll loss in Rosmarinus officinalis plants. Planta 210: 925–931

    Google Scholar 

  • Munné-Bosch S and Alegre L (2000b) The significance of $β$- carotene, $α$-tocopherol and the xanthophyll cycle in droughted Melissa officinalis plants. Aust J Plant Physiol 27: 139–146

    Google Scholar 

  • Munné-Bosch S, Jubany-Mari T and Alegre L (2001) Droughtinduced senescence is characterized by a loss of antioxidant defences in chloroplasts. Plant Cell Environ 24: 1319– 1327

    Google Scholar 

  • Munné-Bosch S, Jubany-Mari T and Alegre L (2003) Enhanced photo- and antioxidative protection, and hydrogen peroxide accumulation in drought-stressed Cistus clusii and Cistus albidus plants. Tree Physiol 23: 1–12

    PubMed  Google Scholar 

  • Munns R (1993) Physiological processes limiting plant growth in saline soils: some dogmas and hypotheses. Plant Cell Environ 16: 15–24

    Google Scholar 

  • Nedunchezhian N, Morales F, Abadía A and Abadía J (1997) Decline in photosynthetic electron transport activity and changes in thylakoid protein pattern in field grown iron deficient peach (Prunus persica L.). Plant Sci 129: 29–38

    CAS  Google Scholar 

  • Nishio JN (2000) Why are higher plants green? Evolution of the higher plant photosynthetic pigment complement. Plant Cell Environ 23: 539–448

    CAS  Google Scholar 

  • Niyogi KK (1999) Photoprotection revisited: genetic and molecular approaches. Annu Rev Plant Physiol Plant Mol Biol 50: 333–359

    PubMed  CAS  Google Scholar 

  • Park YI, Sandstrom S, Gustafsson P and Oü quist G (1999) Expression of the isiA gene is essential for the survival of the cyanobacterium Synechococcus sp. PCC 7942 by protecting photosystem II from excess light under iron limitation. Mol Microbiol 32: 123–129

    PubMed  CAS  Google Scholar 

  • Patsikka E, Kairavuo M, Sersen F, Aro E-M and Tyystjüarvi E (2002) Excess copper predisposes photosystem II to photoinhibition in vivo by outcompeting iron and causing decrease in leaf chlorophyll. Plant Physiol 129: 1359–1367

    PubMed  CAS  Google Scholar 

  • Paul MJ and Driscoll SP (1997) Sugar repression of photosynthesis: the role of carbohydrates in signalling nitrogen deficiency through source:sink imbalance. Plant, Cell Environ 20: 110–116

    CAS  Google Scholar 

  • Paul MJ and Foyer CH (2001) Sink regulation of photosynthesis. J Exp Bot 52: 1383–1400

    PubMed  CAS  Google Scholar 

  • Peoples TR and Koch DW (1979) Role of potassium in carbon dioxide assimilation in Medicago sativa L. Plant Physiol 63: 878–881

    PubMed  CAS  Google Scholar 

  • Powles SB (1984) Photoinhibition of photosynthesis induced by visible light. Annu Rev Plant Physiol 35: 15–44

    CAS  Google Scholar 

  • Quílez R, Abadía A and Abadía J (1992) Characteristics of thylakoids and photosystem II membrane preparations from iron deficient and iron sufficient sugar beet (Beta vulgaris L.). J Plant Nutr 15: 1809–1819

    Google Scholar 

  • Ramalho JC, Campos PS, TeixeiraMand Nunes MA (1998) Nitrogen dependent changes in antioxidant system and in fatty acid composition of chloroplast membranes from Coffea arabica L. plants submitted to high irradiance. Plant Sci 135: 115–124

    CAS  Google Scholar 

  • Ranieri A, Castagna A, Baldan B and Soldatini GF (2001) Iron deficiency differently affects peroxidase isoforms in sunflower. J Exp Bot 52: 25–35

    PubMed  CAS  Google Scholar 

  • Rao IM and Terry N (1989a) Leaf phosphate status, photosynthesis and carbon partitioning in sugar beet. I. Changes in growth, gas exchange and Calvin cycle enzymes. Plant Physiol 90: 814–819

    CAS  Google Scholar 

  • Rao IM and Terry N (1989b) Leaf phosphate status, photosynthesis and carbon partitioning in sugar beet. II. Diurnal changes in sugar phosphates, adenylates and nicotinamide nucleotides. Plant Physiol 90: 820–826

    Google Scholar 

  • Rao IM and Terry N (1990) Leaf phosphate status, photosynthesis and carbon partitioning in sugar beet. III. Diurnal changes in carbon partitioning and carbon export. Plant Physiol 92: 29–36

    PubMed  CAS  Google Scholar 

  • Rawson HM (1986) Gas exchange and growth in wheat and barley grown in salt. Aust J Plant Physiol 13: 475–489

    Google Scholar 

  • Sage RF and Pearcy RW (1987a) The nitrogen use efficiency of C3 and C4 plants. I. Leaf nitrogen, growth and biomass partitioning in Chenopodium album L. and Amaranthus retroflexus L. Plant Physiol 84: 954–958

    CAS  Google Scholar 

  • Sage RF and Pearcy RW (1987b) The nitrogen use efficiency of C3 and C4 plants. II. Leaf nitrogen effects on the gas exchange characteristics of Chenopodium album L. and Amaranthus retroflexus L. Plant Physiol 84: 959–963

    CAS  Google Scholar 

  • Sairam RK and Srivastava GC (2002) Changes in antioxidant activity in sub-cellular fractions of tolerant and susceptible wheat genotypes in response to long term salt stress. Plant Sci 162: 897–904

    CAS  Google Scholar 

  • Sandstrom S, Park YI, Oü quist G and Gustafsson P (2001) CP43’, the isiA gene product, functions as an excitation energy dissipator in the cyanobacterium Synechococcus sp PCC 7942. Photochem Photobiol 74: 431–437

    PubMed  CAS  Google Scholar 

  • Sandstrom S, Ivanov AG, Park YI, Oü quist G and Gustafsson P (2002) Iron stress responses in the cyanobacterium Synechococcus sp PCC7942. Physiol Plant 116: 255–263

    PubMed  CAS  Google Scholar 

  • Sanz M, Cavero J and Abadía J (1992) Iron chlorosis in the Ebro river basin, Spain. J Plant Nutr 15: 1971–1981

    CAS  Google Scholar 

  • Savour’e A, Thorin D, Davey M, Hua X-J, Mauro S, Van Montagu M, Inz’e D and Verbruggen N (1999) NaCl and CuSO4 treatments trigger distinct oxidative defence mechanisms in Nicotiana plumbaginifolia L. Plant Cell Environ 22: 387–396

    CAS  Google Scholar 

  • Schreiber U, Bilger W and Neubauer C (1994) Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis. In: Schulze E-D and Caldwell MM (eds) Ecophysiology of Photosynthesis, pp 49–70. Springer- Verlag, Berlin

    Google Scholar 

  • Schroeder JI (2003) Knockout of the guard cell K+ out channel and stomatal movements. Proc Natl Acad Sci USA 100: 4976– 4977

    PubMed  CAS  Google Scholar 

  • Seemann JR, Sharkey TD,Wang JL and Osmond CB (1987) Environmental effects on photosynthesis, nitrogen-use efficiency, and metabolite pools in leaves of sun and shade plants. Plant Physiol 84: 796–802

    PubMed  CAS  Google Scholar 

  • Sharma PK and Hall DO (1991) Interaction of salt stress and photoinhibition on photosynthesis in barley and sorghum. J Plant Physiol 138: 614–619

    CAS  Google Scholar 

  • Skillman JB and Osmond CB (1998) Influence of nitrogen supply and growth irradiance on photoinhibition and recovery in Heuchera americana (Saxifragaceae). Physiol Plant 103: 567–573

    CAS  Google Scholar 

  • Smirnoff N (1993) The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol 125: 27–58

    CAS  Google Scholar 

  • Steglich C, Behrenfeld M, Koblizek M, Claustre H, Penno S, Prasil O, Partensky F and Hess WR (2001) Nitrogen deprivation strongly affects Photosystem II but not phycoerythrin level in the divinyl-chlorophyll b-containing cyanobacterium Prochlorococcus marinus. Biochim Biophys Acta 19: 341– 349

    Google Scholar 

  • Straus NA (1994) Iron deprivation: Physiology and gene regulation. In: Bryant DA (ed) The Molecular Biology of Cyanobacteria, pp 731–750. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Sugiharto B, Miyata K, Nakamoto H, Sasakawa H and Sugiyama T (1990) Regulation of expression of carbon-assimilating enzymes by nitrogen in maize leaf. Plant Physiol 92: 963– 969

    PubMed  CAS  Google Scholar 

  • Sun J, Nishio JN and Vogelmann TC (1996a) 35S-Methionine incorporates differentially into polypeptides across leaves of spinach (Spinacia oleracea). Plant Cell Physiol 37: 996–1006

    CAS  Google Scholar 

  • Sun J, Nishio JN and Vogelmann TC (1996b) High-light effects on CO2 fixation gradients across leaves. Plant Cell Environ 19: 1261–1271

    Google Scholar 

  • Taylor SE and Terry N (1986) Variation in photosynthetic electron transport capacity and its effect on the light modulation of ribulose bisphosphate carboxylase. Photosynth Res 8: 249– 256

    CAS  Google Scholar 

  • Terashima I and Evans JR (1988) Effects of light and nitrogen nutrition on the organization of the photosynthetic apparatus in spinach. Plant Cell Physiol 29: 143–155

    CAS  Google Scholar 

  • Terry N (1979) The use of mineral nutrient stress in the study of limiting factors in photosynthesis. In: Marcelle R, Clijsters H and Van Poucke M (eds) Photosynthesis and Plant Development, pp 151–160. Dr. Junk W Publishers, The Hague

    Google Scholar 

  • Terry N (1980) Limiting factors in photosynthesis. I. Use of iron stress to control photochemical capacity in vivo. Plant Physiol 65: 114–120

    PubMed  CAS  Google Scholar 

  • Terry N and Abadía J (1986) Function of iron in chloroplasts. J Plant Nutr 9: 609–646

    CAS  Google Scholar 

  • Terry N and Ulrich A (1973a) Effects of potassium deficiency on the photosynthesis and respiration of leaves of sugar beet. Plant Physiol 51: 783–786

    Article  CAS  Google Scholar 

  • Terry N and Ulrich A (1973b) Effects of phosphorus deficiency on the photosynthesis and respiration of leaves of sugar beet. Plant Physiol 51: 43–47

    CAS  Google Scholar 

  • Tobías D (1999) Efectos de la deficiencia de hierro sobre los sistemas antioxidantes en hojas de remolacha y peral. PhD Thesis, University of Zaragoza, Spain

    Google Scholar 

  • Toenniessen GH (1984) Review of the world food situation and the role of salt-tolerant plants. In: Staples RC and Toenniessen GH (eds) Salinity Tolerance of Plants, pp 399–413. Wiley- Interscience, New York

    Google Scholar 

  • Valentini R, Epron D, De Angelis P, Matteucci G and Dreyer E (1995) In situ estimation of net CO2 assimilation, photosynthetic electron flow and photorespiration in Turkey oak (Quercus cerris L.) leaves: diurnal cycles under different levels of water supply. Plant Cell Environ 18: 631–640

    CAS  Google Scholar 

  • Valladares F and Pugnaire FI (1999) Tradeoffs between irradiance capture and avoidance in semi-arid environments assessed with a crown architecture model. Ann Bot 83: 459– 469

    Google Scholar 

  • Vassiliev IR, Kolber Z, Wyman KD, Mauzerall D, Shukla VK and Falkowski PG (1995) Effects of iron limitation on photosystem II composition and light utilization in Dunaliella tertiolecta. Plant Physiol 109: 963–972

    PubMed  CAS  Google Scholar 

  • Verhoeven AS, Demmig-Adams B and Adams III WW (1997) Enhanced employment of the xanthophyll cycle and thermal energy dissipation in spinach exposed to high light and N stress. Plant Physiol 113: 817–824

    PubMed  CAS  Google Scholar 

  • Vinnemeier J and Hagemann M (1999) Identification of saltregulated genes in the genome of the cyanobacterium Synechocystis sp strain PCC 6803 by subtractive RNA hybridization. Arch Microbiol 172: 377–386

    PubMed  CAS  Google Scholar 

  • Vinnemeier J, Kunert A and Hagemann M (1998) Transcriptional analysis of the isiAB operon in salt-stressed cells of the cyanobacterium Synechocystis sp. PCC 6803. FEMS Microbiol Lett 169: 323–330

    PubMed  CAS  Google Scholar 

  • von Caemmerer S and Farquhar GD (1981) Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 153: 376–387

    Google Scholar 

  • Walcroft AS, Whitehead D, Silvester W BandKelliher FM (1997) The response of photosynthetic model parameters to temperature and nitrogen concentration in Pinus radiata D. Don. Plant Cell Environ 20: 1338–1348

    CAS  Google Scholar 

  • Werner C, Correia O and Beyschlag W (2002) Characteristic patterns of chronic and dynamic photoinhibition of different functional groups in a Mediterranean ecosystem. Funct Plant Biol 29: 999–1011

    Google Scholar 

  • Winder TL and Nishio J (1995) Early iron deficiency stress response in leaves of sugar beet. Plant Physiol 108: 1487–1494

    PubMed  CAS  Google Scholar 

  • Xu D-Q and Shen Y-K (1997) Midday depression of photosynthesis. In: Pessarakli M (ed) Handbook of Photosynthesis, pp 451–459. Marcel Dekker Inc, New York

    Google Scholar 

  • Yeo AR(1983) Salinity resistance: physiologies and prices. Physiol Plant 58: 214–222

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Morales, F., Abadía, A., AbadÞa, J. (2008). Photoinhibition and Photoprotection under Nutrient Deficiencies, Drought and Salinity. In: Demmig-Adams, B., Adams, W.W., Mattoo, A.K. (eds) Photoprotection, Photoinhibition, Gene Regulation, and Environment. Advances in Photosynthesis and Respiration, vol 21. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3579-9_6

Download citation

Publish with us

Policies and ethics