Skip to main content

Advertisement

Log in

Driving Multi-electron Reactions with Photons: Dinuclear Ruthenium Complexes Capable of Stepwise and Concerted Multi-electron Reduction

  • Review
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Using biological precedents, it is expected that concerted, multi-electron reduction processes will play a significant role in the development of efficient artificial photosynthetic systems. We have found that the dinuclear ruthenium complexes [(phen)2Ru(tatpp)Ru(phen)2]4+ (P) and [(phen)2Ru(tatpq) Ru(phen)2]4+ (Q) undergo photodriven 2- and 4-electron reductions, respectively, in the presence of a sacrificial reductant. Importantly, these processes are completely reversible upon exposure to air, and consequently, these complexes have the potential to be used catalytically in multi-electron transfer reactions. A localized molecular orbital description of the ligands and complexes is used to explain both the function and spectroscopy of these complexes. In both complexes, the reducing equivalents are stored in the π* orbitals of the bridging ligands and depending on the solution pH, various protonation states of the reduced species of P and Q are obtained. Under basic conditions, the photochemical pathway favors sequential single-electron reductions, while neutral or slightly acidic conditions give rise to proton-coupled multi-electron transfer. In fact, at sufficiently acidic pH, only a coupled two-electron, 2-proton process is seen. Few molecular photocatalysts are capable of proton-coupled multi-electron transfer, which is believed to be a fundamental component of light-activated energy storage in nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BL:

Bridging Ligand

CS:

Charge-separated

CV:

Cyclic Voltammetry

dppz:

dipyrido [3,2-a:2′,3′-c]phenazine)

HER:

H2 Evolution Reaction

HOMO:

Highest Occupied Molecular Orbital

LC:

Ligand Centered

LUMO:

Lowest Unoccupied Molecular Orbital

MeCN:

Acetonitrile

MET:

Multi-electron Transfer

MLCT:

Metal to Ligand Charge Transfer

MV2+ :

Methylviologen

MO:

Molecular Orbital

OEC:

Oxygen Evolving Complex

P :

[(phen)2Ru-tatpp-Ru(phen)2]4+

PCET:

Proton-coupled Electron Transfer

PCMET:

Proton-coupled Multi-electron Transfer

Q :

[(phen)2Ru-tatpq-Ru(phen)2]4+

SCE:

Saturated Calomel Electrode

SEC:

Spectroelectrochemistry

SR:

Sacrificial Reductant

tatpp:

9,11,20,22-tetraazatetrapyrido[3,2-a:2′,3′-c:3′′,2′′-l:2′′′,3′′′-n]pentacene

tatpq:

9,11,20,22-tetraazatetrapyrido[3,2-a:2′,3′-c:3′′,2′′-l:2′′′,3′′′-n]pentacene-10,21-quinone

TEA:

Triethylamine

TEOA:

triethanolamine

tpphz:

tetrapyrido[3,2-a:2′,3′-c:3′′,2′′-h:2′′′,3′′′-j]phenazine)

Reference

  • E Amouyal, D Grand, A Moradpour and P Keller, Photochemical model system for hydrogen production from water: The efficiency of colloidal platinum catalyst associated with viologen electron relay. New J Chem 6 (1982) 241-244

    Google Scholar 

  • Amouyal E, Homsi A, Chambron J-C and Sauvage J-P (1990) Synthesis study of a mixed-ligand ruthenium(II) complex in its ground and excited states: Bis(2,2'-bipyridine)(dipyrido[ 3,2-a:2',3'-c]phenazine-n4n5)ruthenium(II). J Chem Soc, Dalt Trans: 1841–1845

  • Amouyal E, Keller P and Moradpour A (1980) Light-induced hydrogen generation from water catalyzed by ruthenium dioxide. J Chem Soc, Chem Commun: 1019–1020

  • N Armaroli, From metal complexes to fullerene arrays: exploring the exciting world of supramolecular photochemistry fifteen years after its birth. Photochem Photobiol Sci 2 (2003) 73-87

    Article  PubMed  CAS  Google Scholar 

  • V Balzani, A Juris, M Venturi, S Campagna and S Serroni, Luminescent and redox-active polynuclear transition metal complexes. Chem Rev 96 (1996) 759-833

    Article  PubMed  CAS  Google Scholar 

  • E Baranoff, J-P Collin, L Flamigni and J-P Sauvage, From ruthenium(II) to iridium (III):15 years of triads based on bis-terpyrdine complexes. Chem Soc Rev 33 (2004) 147-155

    Article  PubMed  CAS  Google Scholar 

  • AJ Bard and MA Fox, Artificial photosynthesis: Solar splitting of water to hydrogen and oxygen. Acc Chem Res 28 (1995) 141-145

    Article  CAS  Google Scholar 

  • J Bolger, A Gourdon, E Ishow and J-P Launay, Mononuclear and binuclear tetrapyrido [3,2-a:2′,3′-c:3′′,3′′-h:2′′′,3′′′-j]phenazine (tpphz)- ruthenium and osmium complexes. Inorg Chem 35 (1996) 2937-2944

    Article  CAS  Google Scholar 

  • KJ Brewer, Tridentate-bridged polyazine complexes of ruthenium(II) and osmium(II) and their applications to the development of photochemical molecular devices. Comm Inorg Chem 21 (1999) 201-224

    Article  CAS  Google Scholar 

  • S Campagna, S Serroni, S Bodige and FM MacDonnell, Absorption spectra, photophysical properties, and redox behavior of stereochemically pure dendritic ruthenium(II) tetramers and related dinuclear and mononuclear complexes. Inorg Chem 38 (1999) 692-701

    Article  PubMed  CAS  Google Scholar 

  • S Campagna, S Serroni, F Puntoriero, F Loiseau, L Cola De, CJ Kleverlaan, J Becher, AP Sorensen, P Hascoat and N Thorup, Coupling of metal-based light-harvesting antennas and electron-donor subunits: Trinuclear ruthenium(II) complexes containing tetrathiafulvalene-substituted polypyridine ligands. Chem Bur J 8 (2002) 4461-4469

    CAS  Google Scholar 

  • J-C Chambron, J-P Suavage, E Amouyal and P Kiffi, Ru(bipy)2(dipyridophenazine)2+: a complex with a long range directed charge transfer excited state. Nouv J Chim 9 (1985) 527-529

    CAS  Google Scholar 

  • C Chiorboli, C-A Bignozzi, F Scandola, E Ishow, A Gourdon and J-P Launay, Photophysics of dinuclear Ru(II) and Os(II) complexes based on the tpphz bridging ligand. Inorg Chem 38 (1999) 2402-2410

    Article  CAS  Google Scholar 

  • Chiorboli C, Fracasso S, Scandola F, Campagna S, Serroni S, Konduri R and MacDonnell FM (2003) Primary processes in photoinduced multielectron storage systems. A dinuclear ruthenium(II) species featuring a charge-separated state with a lifetime of 1.3 ls. Chem Comm: 1658–1659

  • Chiorboli C, Sandro F, Ravaglia M, Scandola F, Campagna S, Wouters KL, Konduri R and MacDonnell FM ‘Primary processes in bimetallic dyads with extended aromatic bridges. Tetraazatetrapyridopentacene ruthenium(II) and osmium(II) complexes’ (submitted)

  • RI Cukier and DG Nocera, Proton-coupled electron transfer. Ann Rev Phys Chem 49 (1998) 337-369

    Article  CAS  Google Scholar 

  • SM Danks, Photosynthetic Systems: Structure, Function, and Assembly. New York: Wiley (1983).

    Google Scholar 

  • L Cola De and P Belser, Photoinduced energy- and electron transfer processes in rigidly bridged dinuclear Ru/Os complexes. Coord Chem Rev 177 (1998) 301-346

    Article  Google Scholar 

  • NR Tacconi de, RO Lezna, R Konduri, F Ongeri, K Rajeshwar and FM MacDonnell, Influence of ph on the photochemical and electrochemical reduction of the dinuclear ruthenium complex, [(phen)2Ru(tatpp)Ru(phen)2]Cl4, in water: Proton-coupled sequential and concerted multi-electron reduction. Chem Eur J 11 (2005) 1-14

    Article  CAS  Google Scholar 

  • PJ DeLaive, BP Sullivan, TJ Meyer and DG Whitten, Applications of light-induced electron-transfer reactions. Coupling of hydrogen generation with photoreduction of ruthenium(II) complexes by triethylamine. J Am Chem Soc 101 (1979) 4007-4008

    Article  CAS  Google Scholar 

  • LM Dupray, M Devenney, DR Striplin and TJ Meyer, An antenna polymer for visible energy transfer. J Am Chem Soc 119 (1997) 10243-10244

    Article  CAS  Google Scholar 

  • J Fees, W Kaim, M Moscherosch, W Matheis, J Klima, M Krejcik and S Zalis, Electronic structure of the ‘molecular light switch’ bis(bipyrdine)dipyrido[3,2-a:2′,3′-c]phenazineruthenium(2+). Cyclic voltammetric, uv/visible and epr/endor study of multiply reduced complexes and ligands. Inorg Chem 32 (1993) 166-174

    Article  CAS  Google Scholar 

  • Flamigni L, Encinas S, Barigelletti F, MacDonnell FM, Kim M-J, Puntoriero F and Campagna S (2000) Excited-state interconversion between emissive MLCT levels in a dinuclear Ru(II) complex containing a bridging ligand with an extended p system. Chem Comm: 1185–1186

  • M Grätzel, Artificial photosynthesis: Water cleavage into hydrogen and oxygen by visible light. Acc Chem Res 14 (1981) 376

    Article  Google Scholar 

  • Energy Resources through Photochemistry and Catalysis. New York: Academic Press (1983).

    Google Scholar 

  • Grätzel M and Moser J-E (2001) In: Balzani V Weinheim (ed) Solar energy conversion. Electron transfer in chemistry, pp␣589–644. Wiley-VCH Verlag

  • Harriman A and Mills A (1981) Optimization of the rate of hydrogen production from the tris(2,2′-bipyridyl)ruthenium(II) photosensitized reduction of methyl viologen. J Chem Soc, Faraday Trans: 2111–2124

  • AF Heyduk, AM Macintosh and DG Nocera, Four-electron photochemistry of dirhodium fluorophosphine compounds. J Am Chem Soc 121 (1999) 5023-5032

    Article  CAS  Google Scholar 

  • AF Heyduk and DG Nocera, Hydrogen produced from hydrohalic acid solutions by a two-electron mixed-valence photocatalyst. Science 293 (2001) 1639-1641

    Article  PubMed  CAS  Google Scholar 

  • M Hissler, A Harriman, A Khatyr and R Ziessel, Intramolecular triplet energy transfer in pyrene-metal polypyridine dyads: a strategy for extending the triplet lifetime of the metal complex. Chem Eur J 5 (1999) 3366-3381

    Article  CAS  Google Scholar 

  • E Ishow, A Gourdon, J-P Launay, C Chiorboli and F Scandola, Synthesis, mass spectrometry, and spectroscopic properties of a dinuclear ruthenium complex comprising a 20 a long fully aromatic bridging ligand. Inorg Chem 38 (1999) 1504-1510

    Article  CAS  Google Scholar 

  • E Ishow, A Gourdon, J-P Launay, P Lecante, M Verelst, C Chiorboli, F Scandola and C-A Bignozzi, Tetranuclear tetrapyrido[3,2-a:2′,3′-c3′′,2′′-h:2′′′,3′′′-j]phenazineruth- enium complex: synthesis, wide angle scattering, and photophysical studies. Inorg Chem 37 (1998) 3603-3609

    Article  PubMed  CAS  Google Scholar 

  • SA Jenekhe, Electroactive ladder polyquinoxalines. l. Properties of the model compound 5,12-dihydro−5,7,12,14-tetraazapentacene and its complexes. Macromolecules 24 (1991) 1-10

    Article  CAS  Google Scholar 

  • O Johansson, H Wolpher, M Borgstroem, L Hammarstroem, J Bergquist, L Sun and B Kermark, Intramolecular charge separation in a hydrogen bonded tyrosine–ruthenium(II)–naphthalene diimide triad. Chem Comm 2 (2004) 194-195

    Article  PubMed  CAS  Google Scholar 

  • A Juris, F Barigelletti, V Balzani, P Belser and A Zelewsky Von, Luminescence of ruthenium(II) tris chelate complexes containing the ligands 2,2′-bipyridine and 2,2′-biisoquinoline. Behavior of the Ru(bpy)2+ and Ru(bpy) 2 2+ emitting units. Inorg Chem 24 (1985) 202-206

    Article  CAS  Google Scholar 

  • O Khaselev and JA Turner, A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science 280 (1998) 425-427

    Article  PubMed  CAS  Google Scholar 

  • M-J Kim, R Konduri, H Ye, FM MacDonnell, F Puntoriero, S Serroni, S Campagna, T Holder, G Kinsel and R Rajeshwar, Dinuclear Ru(II) polypyridyl complexes containing large, redox-active aromatic bridging ligands. Synthesis, characterization and intramolecular quenching of MLCT excited states. Inorg Chem 41 (2002) 2471-2476

    Article  PubMed  CAS  Google Scholar 

  • K Kirmaier and D Holten, The Photosynthetic Bacterial Reaction Center – Structure and Dynamics. New York: Plenum (1988).

    Google Scholar 

  • J Kiwi and M Graetzel, Projection, size factors, and reaction dynamics of colloidal redox catalysts mediating light induced hydrogen evolution from water. J Am Chem Soc 101 (1979) 7214-7217

    Article  CAS  Google Scholar 

  • R Konduri, NR Tacconi de, K Rajeshwar and FM MacDonnell, Multielectron photoreduction of a bridged ruthenium dimer, [(phen)2Ru(tatpp)Ru(phen)2] [PF6]4: aqueous reactivity and chemical and spectroelectrochemical identification of the photoproducts. J Am Chem Soc 126 (2004) 11621-11629

    Article  PubMed  CAS  Google Scholar 

  • R Konduri, H Ye, FM MacDonnell, S Serroni, S Campagna and K Rajeshwar, New ruthenium photocatalysts capable of reversibly storing up to four electrons in a single acceptor ligand: a step closer to artificial photosynthesis. Angew Chem Int Ed 41 (2002) 3185-3187

    Article  CAS  Google Scholar 

  • J-M Lehn, J-P Sauvage and R Ziessel, Photochemical hydrogen production: development of efficient heterogeneous redox catalysts. Nov J Chim 5 (1981) 291

    CAS  Google Scholar 

  • L Loy and EE Wolf, Photo-induced hydrogen evolution from water in the presence of EDTA and a platinum/titanium dioxide supported catalyst. Solar Energy 34 (1985) 455-461

    Article  CAS  Google Scholar 

  • R Manchanda, GW Brudvig and RH Crabtree, High-valent oxomanganese clusters: structural and mechanistic work relevant to the oxygen-evolving center in photosystem II. Coord Chem Rev 144 (1995) 1-38

    Article  CAS  Google Scholar 

  • ND McClenaghan, R Passalacqua, F Loiseau, S Campagna, B Verbeyde, A Hameurlaine and W Dehaen, Ruthenium(ii) dendrimers containing carbazole-based chromophores as branches. J Am Chem Soc 125 (2003) 5356-5365

    Article  PubMed  Google Scholar 

  • TJ Meyer, Chemical approaches to artificial photosynthesis. Acc Chem Res 22 (1989) 163

    Article  CAS  Google Scholar 

  • SM Molnar, G Nallas, JS Bridgewater and KI Brewer, Photoinitiated electron collection in a mixed-metal trimetallic complex of the form {[(bpy)2Ru(dpb)]2Ircl2}(PF6)5(bpy = 2,2′-bipriyndine and dpb = 2,3-bis(2-pyridyl)benzoquinoxaline). J Am Chem Soc 116 (1994) 5206-5210

    Article  CAS  Google Scholar 

  • AF Morales, G Accorsi, N Armaroli, F Barigelletti, SJA Pope and MD Ward, Interplay of light antenna and excitation ‘energy reservoir’ effects in a bichromophoric system based on ruthenium-polypyridine and pyrene units linked by a long and flexible poly(ethylene glycol) chain. Inorg Chem 41 (2002) 6711-6719

    Article  PubMed  CAS  Google Scholar 

  • G Pourtois, D Beljonne, C Moucheron, S Schumm, A Kirsch-De Mesmaeker, R Lazzaroni and J-L Bredas, Photophysical properties of ruthenium(II) polyazaaromatic compounds: a theoretical insight. J Am Chem Soc 126 (2004) 683-692

    Article  PubMed  CAS  Google Scholar 

  • L Sawtschenko, K Jobst, A Neudeck and L Dunsch, Electrochemical and spectroelectrochemical studies of dihydro-tetra-azapentacene as a model of polyazaacene. Electrochimica Acta 41 (1996) 123-131

    Article  CAS  Google Scholar 

  • Scandola F, Argazzi R, Bignozzi CA, Chiorboli C, Indelli MT and Rampi MA (1992) In: Balzani V and De Cola L (eds) Supramolecular chemistry, pp 235–248. Kluwer Academic Publishers, Dordrecht, The Netherlands

  • S Serroni, S Campagna, F Puntoriero, F Loiseau, V Ricevuto, R Passalacqua and M Galletta, Dendrimers made of ru(ii) and os(ii) polypyridine subunits as artificial light-harvesting antennae. Comptes Rendus Chimie 6 (2003) 883-893

    Article  CAS  Google Scholar 

  • S Serroni, G Denti, S Campagna, A Juris, M Ciano and V Balzani, Arborols based on luminescent and redox-active transition metal complexes. An gew Chem Int Ed Engl 31 (1992) 1493

    Article  Google Scholar 

  • R Serway and R Beichner, Physics for Scientists and Engineers with Modern Physics. Orlando: Saunders College Publishing (2000).

    Google Scholar 

  • N Sutin, C Creutz and E Fujita, Photo-induced generation of dihydrogen and reduction of carbon dioxide using transition metal complexes. Comm Inorg Chem 19 (1997) 67-92

    Article  CAS  Google Scholar 

  • C Tommos and GT Babcock, Oxygen production in nature: a light-driven metalloradical enzyme process. Acc Chem Res 31 (1998) 18-25

    Article  CAS  Google Scholar 

  • AS Torres, DJ Maloney, P Tate and FM MacDonnell, Retention of optical activity during oxidation of Λ-[Ru (1,10-phenanthroline)3]2+ to Λ-[Ru 1,10-phenanthroline−5,6-dione)3J2+. Inorg Chim Acta 293 (1999) 37-43

    Article  CAS  Google Scholar 

  • JA Treadway, P Chen, TJ Rutherford, FR Keene and TJ Meyer, Mapping electron transfer pathways in a chromophore-quencher triad. J Phys Chem A 101 (1997) 6824-6826

    Article  CAS  Google Scholar 

  • RJ Watts, Photogeneration of strong one- and two-electron redox agents from transition metal complexes. Comm Inorg Chem 11 (1991) 303-337

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederick M. MacDonnell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wouters, K.L., de Tacconi, N.R., Konduri, R. et al. Driving Multi-electron Reactions with Photons: Dinuclear Ruthenium Complexes Capable of Stepwise and Concerted Multi-electron Reduction. Photosynth Res 87, 41–55 (2006). https://doi.org/10.1007/s11120-005-6398-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-005-6398-8

Keywords

Navigation