Skip to main content

Advertisement

Log in

Maize tassel number and tasseling stage monitoring based on near-ground and UAV RGB images by improved YoloV8

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

The monitoring of the tassel number and tasseling time reflects the maize growth and is necessary for crop management. However, it mainly depends on field observations, which is very labor intensive and may be biased by human errors. Tassel detection remains challenging due to the varying appearance of tassels across maize varieties, tasseling stages, and spatial resolutions. Moreover, the capability of the deep learning model for monitoring tassel number change and the time of entering tasseling stage has not been explored. In this study, we propose a novel approach for fast tassel detection using PConv (Partial Convolution) within YoloV8 series, named PConv-YoloV8 series. Compared to seven state-of-the-art deep learning methods, PConv-YoloV8 × 6 best trades off detection accuracy with the number of parameters (Parameters = 52.50 MB, AP = 0.950, R2 = 0.92, rRMSE = 9.08%). The potential of PConv-YoloV8 × 6 to provide an accurate detection of tassels in complex situations from near-ground and UAV images were comprehensively studied. PConv-YoloV8 × 6 maintained an excellent detection accuracy for maize at different tasseling stages (AP = 0.826–0.972, R2 = 0.83–0.92, RMSE = 1.94–3.01, rRMSE = 21.06%-7.09%), for different varieties (AP = 0.901–0.978, R2 = 0.77–0.97, RMSE = 1.39–3.16, rRMSE = 11.72%-5.06%), at different resolutions (AP = 0.921–0.956, R2 = 0.84–0.93, rRMSE = 8.72%-17.71%), and on UAV images with different resolutions (AP = 0.918–0.968, R2 = 0.98–0.99, rRMSE = 6.43%-12.76%), which proved the robustness of the model. The tasseling number and the time of entering tasseling stage detected from images were basically consistent with the trends observed in the manually labeled results. This study provides an effective method to monitor the tassel number and the time of entering the tasseling stage. A new maize tassel detection dataset (18260 tassels in 729 near-ground images and 20835 tassels in 144 UAV images) is created. Future studies will focus on making more lightweight models and achieving real-time detection capabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig.11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  • Alzadjali, A., Alali, M. H., Veeranampalayam Sivakumar, A. N., et al. (2021). Maize tassel detection from uav imagery using deep learning. Frontiers in Robotics and AI, 1, 136.

    Google Scholar 

  • Araus, J. L., & Cairns, J. E. (2014). Field high-throughput phenotyping: The new crop breeding frontier. Trends in Plant Science, 19(1), 52–61.

    Article  CAS  PubMed  Google Scholar 

  • Bochkovskiy, A., Wang, C.-Y. and Liao, H.-Y.M., 2020. Yolov4: Optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934.

  • Castelazo, G., Nguyen, Q. T., De Palma, G., et al. (2022). Quantum algorithms for group convolution, cross-correlation, and equivariant transformations. Physical Review A, 106(3), 032402.

    Article  CAS  Google Scholar 

  • Chai, T., & Draxler, R. R. (2014). Root mean square error (RMSE) or mean absolute error (MAE)?–Arguments against avoiding RMSE in the literature. Geoscientific Model Development, 7(3), 1247–1250.

    Article  Google Scholar 

  • Chen, J., Kao, S.-h., He, H. et al., 2023. Run, Don't Walk: Chasing Higher FLOPS for Faster Neural Networks, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12021–12031.

  • Chen, S., Xiong, J., Jiao, J., Xie, Z., Huo, Z., & Hu, W. (2022). Citrus fruits maturity detection in natural environments based on convolutional neural networks and visual saliency map. Precision Agriculture, 23, 1–17.

    Article  Google Scholar 

  • Darrenl, 2017. LabelIng. Available online: https://github.com/tzutalin.

  • Dauphin, G.M.Y., Glorot, X., Rifai, S. et al., 2012. Unsupervised and transfer learning challenge:a deep learning approach. PMLR [Internet]: 97–110.

  • Deery, D., Jimenez-Berni, J., Jones, H., Sirault, X., & Furbank, R. (2014). Proximal remote sensing buggies and potential applications for field-based phenotyping. Agronomy, 4(3), 349–379.

    Article  Google Scholar 

  • Ge, Z., Liu, S., Wang, F., Li, Z. and Sun, J., 2021. Yolox: Exceeding yolo series in 2021. arXiv preprint arXiv:2107.08430.

  • Gebbers, R., & Adamchuk, V. I. (2010). Precision agriculture and food security. Science, 327(5967), 828–831.

    Article  CAS  PubMed  Google Scholar 

  • Girshick, R., Donahue, J., Darrell, T. and Malik, J., 2014. Rich feature hierarchies for accurate object detection and semantic segmentation, Proceedings of the IEEE conference on computer vision and pattern recognition.

  • Hanway, J.J., 1966. How a corn plant develops.

  • He, K., Zhang, X., Ren, S., & Sun, J. (2015). Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(9), 1904–1916.

    Article  PubMed  Google Scholar 

  • Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks. Science, 313(5786), 504–507.

    Article  CAS  PubMed  Google Scholar 

  • Huther, P., Schandry, N., Jandrasits, K., Bezrukov, I., & Becker, C. (2020). ARADEEPOPSIS, an automated workflow for top-view plant phenomics using semantic segmentation of leaf states. The Plant Cell, 32(12), 3674–3688.

    Article  PubMed  PubMed Central  Google Scholar 

  • Janiesch, C., Zschech, P., & Heinrich, K. (2021). Machine learning and deep learning. Electronic Markets, 31(3), 685–695.

    Article  Google Scholar 

  • Jiang, P., Ergu, D., Liu, F., Cai, Y., & Ma, B. (2022). A review of yolo algorithm developments. Procedia Computer Science, 199, 1066–1073.

    Article  Google Scholar 

  • Jin, X., Liu, S., Baret, F., Hemerlé, M., & Comar, A. (2017). Estimates of plant density of wheat crops at emergence from very low altitude UAV imagery. Remote Sensing of Environment, 198, 105–114.

    Article  Google Scholar 

  • Jin, X., Madec, S., Dutartre, D., Comar, A., & Baret, F. (2019). High-throughput measurements of stem characteristics to estimate ear density and above-ground biomass. Plant Phenomics. https://doi.org/10.34133/2019/4820305

    Article  PubMed  PubMed Central  Google Scholar 

  • Jin, X., Zarco-Tejada, P. J., Schmidhalter, U., Reynolds, M. P., Hawkesford, M. J., Varshney, R. K., Yang, T., Nie, C., Li, Z., Ming, B., Xiao, Y., Xie, Y., & Li, S. (2020). High-throughput estimation of crop traits: A review of ground and aerial phenotyping platforms. IEEE Geoscience and Remote Sensing Magazine. https://doi.org/10.1109/MGRS.2020.2998816

    Article  Google Scholar 

  • Jingdan, H. E., Wen, R., Tian, S., et al. (2017). Effects of drought stress and re-watering on growth and yield of different maize varieties at tasseling stage. Agricultural Science & Technology. https://doi.org/10.1109/MGRS.2020.2998816

    Article  Google Scholar 

  • Jintasuttisak, T., Edirisinghe, E., & Elbattay, A. (2022). Deep neural network based date palm tree detection in drone imagery. Computers and Electronics in Agriculture, 192, 106560.

    Article  Google Scholar 

  • Khalid, S., Oqaibi, H. M., Aqib, M., & Hafeez, Y. (2023). Small pests detection in field crops using deep learning object detection. Sustainability, 15(8), 6815.

    Article  Google Scholar 

  • Khan, Z. Y., & Niu, Z. (2021). CNN with depthwise separable convolutions and combined kernels for rating prediction. Expert Systems with Applications, 170, 114528.

    Article  Google Scholar 

  • Kumar, A., Desai, S. V., Balasubramanian, V. N., et al. (2021). Efficient maize tassel-detection method using UAV based remote sensing. Remote Sensing Applications: Society and Environment, 23, 100549.

    Article  Google Scholar 

  • Kurtulmuş, F., & Kavdir, I. (2014). Detecting corn tassels using computer vision and support vector machines. Expert Systems with Applications, 41(16), 7390–7397.

    Article  Google Scholar 

  • LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444.

    Article  CAS  PubMed  Google Scholar 

  • Li, Y., Fan, Q., Huang, H., Han, Z., & Gu, Q. (2023). A modified YOLOv8 detection network for UAV aerial image recognition. Drones, 7(5), 304.

    Article  Google Scholar 

  • Lin, T.-Y., Maire, M., Belongie, S. et al., 2014. Microsoft coco: Common objects in context, European conference on computer vision. Springer, pp. 740–755.

  • Liu, S., Qi, L., Qin, H., Shi, J. and Jia, J., 2018. Path aggregation network for instance segmentation, Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 8759–8768.

  • Liu, S., Yin, D., Feng, H., Li, Z., Xiaobin, X., Shi, L., & Jin, X. (2022). Estimating maize seedling number with UAV RGB images and advanced image processing methods. Precision Agriculture, 23(5), 1604–1632.

    Article  Google Scholar 

  • Liu, W., Anguelov, D., Erhan, D. et al., 2016a. Ssd: Single shot multibox detector, European conference on computer vision. Springer, pp. 21–37.

  • Liu, W., Anguelov, D., Erhan, D. et al., 2016b. SSD: Single Shot MultiBox Detector.

  • Liu, W., Quijano, K., & Crawford, M. M. (2022b). YOLOv5-Tassel: Detecting tassels in RGB UAV imagery with improved YOLOv5 based on transfer learning. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 15, 8085–8094.

    Article  Google Scholar 

  • Liu, Y., Cen, C., Che, Y., Ke, R., Ma, Y., & Ma, Y. (2020). Detection of maize tassels from UAV RGB imagery with faster R-CNN. Remote Sensing, 12(2), 338.

    Article  CAS  Google Scholar 

  • Lou, H., Duan, X., Guo, J., Liu, H., Jason, G., Bi, L., & Chen, H. (2023). DC-YOLOv8: Small-size object detection algorithm based on camera sensor. Electronics, 12(10), 2323.

    Article  Google Scholar 

  • Lu, H., Cao, Z., Xiao, Y., Fang, Z., & Zhu, Y. (2017a). Towards fine-grained maize tassel flowering status recognition: Dataset, theory and practice. Applied Soft Computing, 56, 34–45.

    Article  Google Scholar 

  • Lu, H., Cao, Z., Xiao, Y., et al. (2015). Fine-grained maize tassel trait characterization with multi-view representations. Computers and Electronics in Agriculture, 118, 143–158.

    Article  Google Scholar 

  • Lu, H., Cao, Z., Xiao, Y., Zhuang, B., & Shen, C. (2017b). TasselNet: Counting maize tassels in the wild via local counts regression network. Plant Methods, 13(1), 1–17.

    Article  Google Scholar 

  • Lu, H., Liu, L., Li, Y.-N., et al. (2021). TasselNetV3: Explainable plant counting with guided upsampling and background suppression. IEEE Transactions on Geoscience and Remote Sensing, 60, 1–15.

    Google Scholar 

  • Madec, S., Jin, X., Hao, L., De Solan, B., Liu, S., Duyme, F., Heritier, E., & Baret, F. (2019). Ear density estimation from high resolution RGB imagery using deep learning technique. Agricultural forest meteorology, 264, 225–234.

    Article  Google Scholar 

  • Miller, D., Moghadam, P., Cox, M., Wildie, M. and Jurdak, R., 2022. What's in the Black Box? The False Negative Mechanisms Inside Object Detectors. arXiv preprint arXiv:2203.07662.

  • Padilla, R., Netto, S.L. and Da Silva, E.A., 2020. A survey on performance metrics for object-detection algorithms, 2020 international conference on systems, signals and image processing (IWSSIP). IEEE, pp. 237–242.

  • Pattanshetti, S. S., & Nivade, S. I. (2021). Real-Time object detection with pre-eminent speed and precision using YOLOv4. International Journal of Research in Engineering, Science and Management, 4(7), 26–31.

    Google Scholar 

  • Quan, L., Feng, H., & Lv, Y. (2019). Maize seedling detection under different growth stages and complex field environments based on an improved Faster R-CNN. Biosystems Engineering, 184, 1–23.

    Article  Google Scholar 

  • Ren, S., He, K., Girshick, R., & Sun, J. (2016). Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(6), 1137–1149.

    Article  PubMed  Google Scholar 

  • Schneekloth, J., Bauder, T., & Hansen, N. (2009). Limited irrigation management: Principles and practices. Colorado State University.

    Google Scholar 

  • Shekoofa, A., Emam, Y., Shekoufa, N., Ebrahimi, M., & Ebrahimie, E. (2014). Determining the most important physiological and agronomic traits contributing to maize grain yield through machine learning algorithms: A new avenue in intelligent agriculture. PLoS ONE, 9(5), e97288.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sozzi, M., Cantalamessa, S., Cogato, A., Kayad, A., & Marinello, F. (2022). Automatic bunch detection in white grape varieties using YOLOv3, YOLOv4, and YOLOv5 deep learning algorithms. Agronomy, 12(2), 319.

    Article  Google Scholar 

  • Tan, M. and Le, Q., 2019. Efficientnet: Rethinking model scaling for convolutional neural networks, International conference on machine learning. PMLR, pp. 6105–6114.

  • Tan, M., Pang, R. and Le, Q.V., 2020. Efficientdet: Scalable and efficient object detection, Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 10781–10790.

  • Tassinari, P., Bovo, M., Benni, S. et al., 2021. A computer vision approach based on deep learning for the detection of dairy cows in free stall barn. 182: 106030

  • Theckedath, D., & Sedamkar, R. (2020). Detecting affect states using VGG16, ResNet50 and SE-ResNet50 networks. SN Computer Science, 1(2), 1–7.

    Article  Google Scholar 

  • Ultralytics, 2020. YOLOv5. Available online: https://github.com/ultralytics/yolov5 (accessed on 1 November 2020).

  • Ultralytics, 2022. YOLOv8. Available online: https://github.com/ultralytics/ultralytics (accessed on 1 November 2022).

  • Wu, J., Yang, G., & Yang, X. (2019). Automatic counting of in situ rice seedlings from UAV images based on a deep fully convolutional neural network. Remote Sensing, 11(6), 691.

    Article  Google Scholar 

  • Ye, M., Cao, Z. and Yu, Z., 2013. An image-based approach for automatic detecting tasseling stage of maize using spatio-temporal saliency, MIPPR 2013: Remote sensing image processing, geographic information systems, and other applications. International Society for Optics and Photonics, pp. 89210Z.

  • Yin, D., & Wang, L. (2016). How to assess the accuracy of the individual tree-based forest inventory derived from remotely sensed data: A review. International Journal of Remote Sensing, 37(19), 4521–4553.

    Article  Google Scholar 

  • Zan, X., Zhang, X., Xing, Z., Liu, W., Zhang, X., Wei, S., Liu, Z., Zhao, Y., & Li, S. (2020). Automatic detection of maize tassels from UAV images by combining random forest classifier and VGG16. Remote Sensing, 12(18), 3049.

    Article  Google Scholar 

  • Zhou, F., Zhao, H. and Nie, Z., 2021. Safety helmet detection based on YOLOv5, 2021 IEEE International Conference on Power Electronics, Computer Applications (ICPECA). IEEE, pp. 6–11.

  • Zou, H., Lu, H., Li, Y., Liu, L., & Cao, Z. (2020). Maize tassels detection: A benchmark of the state of the art. Plant Methods, 16, 108.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by Nanfan special project, CAAS (YBXM2305), National Natural Science Foundation of China (42071426, 42301427), Key Cultivation Program of Xinjiang Academy of Agricultural Sciences (xjkcpy-2020003), Research and Application of Key Technologies of Smart Brain for Farm Decision-Making Platform (2021ZXJ05A03), the Agricultural Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenbin Wu or Xiuliang Jin.

Ethics declarations

Competing interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, X., Yin, D., Xu, H. et al. Maize tassel number and tasseling stage monitoring based on near-ground and UAV RGB images by improved YoloV8. Precision Agric (2024). https://doi.org/10.1007/s11119-024-10135-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11119-024-10135-y

Keywords

Navigation