Skip to main content
Log in

Within-field spatial variability and potential for profitability of variable rate applications

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

Since literature is not unanimous about profitability of variable rate application (VRA), a systematic analysis is essential to determine when, where and how to increase the production profits. This paper examines the relationship between the within-field spatial variability of soil fertility and profitability of variable rate fertilisation (VRF) and VR seeding (VRS). Within-field spatial variability was determined using high resolution data of key soil attributes, subjected to a modified Cambardella Index (CI). Profitability was determined as the net revenue over the VRA input, which is an adjusted form of the contribution margin. Results showed that the contribution margin of VRAs ranged from 847 to 6624 EUR per ha. Variations in the adjusted contribution margin were positively correlated with the adjusted Cambardella index, confirming the assumption that VRA is more profitable in fields with a higher spatial variability. Findings are interpreted in a production-theoretical framework, which discussed whether, when and under which circumstances, the observed potential for profit will effectively lead to profitability increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andrés-Abellán, M., Wic-Baena, C., López-Serrano, F. R., García-Morote, F. A., Martínez-García, E., Picazo, M. I., Rubio, E., Moreno-Ortego, J. L., Bastida-López, F., & García-Izquierdo, C. (2019). A soil-quality index for soil from Mediterranean forests. European Journal of Soil Science, 70, 1001–1011. https://doi.org/10.1111/ejss.12798.

    Article  CAS  Google Scholar 

  • Babcock, B. A., & Pautsch, G. R. (1998). Moving from Uniform to Variable Fertiliser Rates on Iowa Corn: Effects on rates and returns. Journal of Agricultural and Resource Economics, 23(2), 385–400.

    Google Scholar 

  • Basso, B., Dumont, B., Cammarano, D., Pezzuolo, A., Marinello, F., & Sartori, L. (2016). Environmental and economic benefits of variable rate nitrogen fertilisation in a nitrate vulnerable zone. Science of Total Environment, 545, 227–235.

    Article  Google Scholar 

  • Bullock, D. S., Lowenberg-DeBoer, J., & Swinton, S. M. (2002). Adding value to spatially managed inputs by understanding site-specific yield response. Agricultural Economics, 27, 233–245. https://doi.org/10.1111/j.1574-0862.2002.tb00119.x.

    Article  Google Scholar 

  • Cambardella, C. A., Moorman, T. B., Parkin, T. B., Karlen, D. L., Novak, J. M., Turco, R. F., & Konopka, A. E. (1994). Field-scale variability of soil properties in central Iowa soils. Soil Science Society of America Journal, 58(5), 1501–1511. https://doi.org/10.2136/sssaj1994.03615995005800050033x.

    Article  Google Scholar 

  • Ehsani, M. R., Durairaj, C. D., Woods, S., & Sullivan, M. (2005). Potential application of electrical conductivity (EC) map for variable rate seeding. Agricultural Engineering International: CIGR Ejournal, 7, 1–17.

    Google Scholar 

  • Gebbers, R., & Adamchuck, V. (2010). Precision agriculture and food security. Science, 327(5967), 828–831.

    Article  CAS  PubMed  Google Scholar 

  • Griffin, T., & Lowenber-DeBoer, J. (2005). Worldwide adoption and profitability of precision agriculture: Implications for Brazil. Revista de Politica Agricola, XIV(4), 20–37. https://doi.org/10.5539/jas.v8n11p89.

    Article  Google Scholar 

  • Guerrero, A., De Neve, S., & Mouazen, A. M. (2021). Data fusion approach for map-based variable-rate nitrogen fertilisation in barley and wheat. Soil and Tillage Research, 205, 104789.

    Article  Google Scholar 

  • Gupta, S. K., & Gupta, I. C. (2017). Genesis and Management of Sodic (Alkali) Soils. India: Scientific Publisher.

    Google Scholar 

  • Harman, H. (1968). Modern factor analysis. Chicago: University of Chicago.

    Google Scholar 

  • Hazell, P., & Norton, R. D. (1986). Mathematical programming for economic analysis in agriculture. New York: Macmillan.

    Google Scholar 

  • Higgins, V., Bryant, M., Howell, A., & Battersby, J. (2017). Ordering adoption: Materiality, knowledge and farmer engagement with precision agriculture technologies. Journal of Rural Studies, 55, 193–202. https://doi.org/10.1016/j.jrurstud.2017.08.011.

    Article  Google Scholar 

  • Hörbe, T. A. N. N., Amado, T. J. C. C., Ferreira, A. O., & Alba, P. J. (2013). Optimization of corn plant population according to management zones in Southern Brazil. Precision Agriculture, 14, 450–465. https://doi.org/10.1007/s11119-013-9308-7.

    Article  Google Scholar 

  • Industrial Business Economic Results 2022 Industrial Business Economic Results | Agriculture & Fisheries, 17 (May 2022). landbouwcijfers.vlaanderen.be/bedrijfseconomische-resultaten-bedrijfstakken.

  • ISO 10694. (1995) Soil quality — determination of organic and total carbon after dry combustion (elementary analysis). The International Organization for Standardization, Switzerland

  • ISO 11885. (2007) Water quality — determination of selected elements by inductively coupled plasma optical emission spectrometry (ICP-OES). The International Organization for Standardization, Switzerland

  • Jiang, W., Wang, Wu, Q., Dong, S., Liu, P., & Zhang, J. (2013). Effects of narrow plant spacing on root distribution and physiological nitrogen use efficiency in summer maize. Crop Journal, 1(1), 77–83. https://doi.org/10.1016/j.cj.2013.07.011.

    Article  Google Scholar 

  • Kravchenko, A. N., & Bullock, D. G. (2000). Correlation of corn and soybean grain yield with Topography and Soil Properties. Agronomy Journal, 92(1), 75–83. https://doi.org/10.2134/agronj2000.92175x.

    Article  Google Scholar 

  • Leroux, C., & Tisseyre, B. (2019). How to measure and report within field variability: A review of common indicators and their sensitivity. Precision Agriculture, 20, 562–590.

    Article  Google Scholar 

  • Loecke, T. D., Cambardella, C. A., & Liebman, M. (2012). Synchrony of net nitrogen mineralization and maize nitrogen uptake following applications of composted and fresh swine manure in the Midwest US. Nutrient Cycling in Agroecosystem, 93, 65–74. https://doi.org/10.1007/s10705-012-9500-6

    Article  Google Scholar 

  • Lovell, A. (2016). ‘Variable-rate seeding next step in precision farming. WWW Document, In: Seeding and Tillage Focus: Southwest corn grower reports high yield and lower seed costs. Manitoba Co-operator, Retrieved 5 July 2018 from https://www.manitobacooperator.ca/crops/variable-rate-seeding-next-step-in-precision-farming/

  • Lowenberg-DeBoer, J., & Erickson, B. (2019). Setting the record straight on precision agriculture adoption. Agronomy Journal, 3(4), 1552–1569. https://doi.org/10.2134/agronj2018.12.0779

    Article  Google Scholar 

  • McConnell, M. D. (2019). Bridging the gap between conservation delivery and economics with precision agriculture. Wildlife Society Bulletin. https://doi.org/10.1002/wsb.995.

    Article  Google Scholar 

  • Meyer-Aurich, A., Weersink, A., Gandorfer, M., & Wagner, P. (2010). Optimal site-specific fertilisation and harvesting strategies with respect to crop yield and quality response to nitrogen. Agricultural Systems, 103, 478–485. https://doi.org/10.1016/j.agsy.2010.05.001

    Article  Google Scholar 

  • Mouazen, A. M. (2006) Soil survey device. International publication published under the patent cooperation treaty (PCT). World Intellectual Property Organization, International Bureau. International Publication Number: WO2006/015463; PCT/BE2005/000129; IPC: G01N21/00; G01N21/00.

  • Munnaf, M. A., & Mouazen, A. M. (2021). Development of a soil fertility index using on-line Vis-NIR spectroscopy. Computers and Electronics in Agriculture, 188, 106341.

    Article  Google Scholar 

  • Munnaf, M. A., Haesaert, G., Van Meirvenne, M., & Mouazen, A. M. (2020). Map-based site-specific seeding of consumption potato production using high-resolution soil and crop data fusion. Computers and Electronics in Agriculture, 178, 105752.

    Article  Google Scholar 

  • Munnaf, M. A., Haesaert, G., & Mouazen, A. M. (2021). Map-based site-specific seeding of seed potato production by fusion of proximal and remote sensing data. Soil and Tillage Research, 206, 104801.

    Article  Google Scholar 

  • Pallottino, F., Biocca, M., Nardi, P., Figortilli, S., Menesatti, P., & Costa, C. (2018). Science mapping approach to analyze the research evolution on precision agriculture: World, EU and italian situation. Precision Agriculture, 19, 1011–1026. https://doi.org/10.1007/s11119-018-9569-2. https://link.springer.com/article/.

    Article  Google Scholar 

  • Pannell, D. (2006). Flat Earth Economics: The Far-reaching consequences of flat payoff functions in economic decision making. Review of Agricultural Economics, 28(4), 553–566. https://www.jstor.org/stable/3877202.

    Article  Google Scholar 

  • Paxton, K. W., Mishra, A. K., Chintawar, S., Roberts, R. K., Larson, J. A., English, B. C., Lambert, D. M., Marra, M. C., Larkin, S. L., Reeves, J. M., & Martin, S. W. (2011). Intensity of Precision Agriculture Technology Adoption by Cotton Producers. Agricultural and Resource Economics Review, 40(01), 133–144. https://doi.org/10.1017/S1068280500004561.

    Article  Google Scholar 

  • Plant, R. (2001). Site-specific management: The application of information technology to crop production. Computers and Electronics in agriculture, 30(1), 9–29. https://doi.org/10.1016/S0168-1699(00)00152-6.

    Article  Google Scholar 

  • Roberts, D. F., Kitchen, N. R., Scharf, P. C., & Sudduth, K. A. (2010). Will variable-rate nitrogen fertilisation using corn canopy reflectance sensing deliver environmental benefits? Agronomy Journal, 102(1), 85–95. https://doi.org/10.2134/agronj2009.0115

    Article  CAS  Google Scholar 

  • Sánchez-Girón, V., Serrano, A., Hernaz, J. L., & Navarrete, L. (2004). Economic assessment of three long-term tillage systems for rainfed cereal and legume production in semiarid central Spain. Soil and Tillage Research, 38(1), 35–44. https://doi.org/10.1016/j.still.2004.01.001

    Article  Google Scholar 

  • Šarauskis, E., Kazlauskas, M., & Naujokien ̇e, V., Bruˇcien ̇e, I., Romaneckas, K., & Jasinskas, A. (2022). Variable rate seeding in precision agriculture: Recent advances and future perspectives. Agriculture, 12, 305. https://doi.org/10.3390/agriculture12020305

    Article  Google Scholar 

  • Saavoss, M. (2018) Productivity and profitability of precision agriculture technologies on peanut farms. Economic Research Service, USDA

  • Seidel, E., & Oliveira, M. (2016). A classification for a geostatistical index of spatial dependence. Revista Brasileira de Ciëncia do Solo, 40, 40160007.

    Google Scholar 

  • Smidt, E., Gaska, J., Conley, S., & Zhu, J. (2015). What data layers are important for variable rate soybean seeding prescriptions? Wisconsin Crop Management Newsletter May 1–4.

  • Späti, K., Huber, R., & Finger, R. (2021). Benefits of increasing informaton accuracy in variable rate technologies. Ecological Economics, 185, 107047. https://doi.org/10.1016/j.ecolecon.2021.107047

    Article  Google Scholar 

  • Yost, M. A., Kitchen, N. R., Sudduth, K. A., Massey, R. E., Sadler, E. J., Drummond, S. T., & Volkmann, M. R. (2019). A long-term agriculture system sustains grain profitability. Precision Agriculture, 20, 1177–1198. https://doi.org/10.1007/s11119-019-09649-7

    Article  Google Scholar 

  • Yuan, C., & Yang, H. (2019). Research on K-value selection method of K-means clustering algorithm. J 2019, 2, 226–235. https://doi.org/10.3390/j2020016

    Article  Google Scholar 

  • Zhang, J., Guerrero, A., & Mouazen, A. M. (2021). Map-based variable-rate manure application in wheat using a data fusion approach. Soil Tillage Research, 207, 104846. https://doi.org/10.1016/j.still.2020.104846

    Article  Google Scholar 

Download references

Acknowledgements

Authors acknowledge the financial support received from the Research Foundation - Flanders (FWO) for Odysseus I SiTeMan Project (Nr. G0F9216 N).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul Mounem Mouazen.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, M., Guerrero, A., Munnaf, M.A. et al. Within-field spatial variability and potential for profitability of variable rate applications. Precision Agric 24, 2248–2263 (2023). https://doi.org/10.1007/s11119-023-10039-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-023-10039-3

Keywords

Navigation