Skip to main content
Log in

Evaluation of rapeseed flowering dynamics for different genotypes with UAV platform and machine learning algorithm

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

Rapeseed (Brassica napus L.) is an important oil-bearing cash crop. Effective identification of the rapeseed flowering date is important for yield estimation and disease control. Traditional field measurements of rapeseed flowering are time-consuming, labour-intensive and strongly subjective. In this study, red, green and blue (RGB) images of rapeseed flowering derived from unmanned aerial vehicles (UAVs) were acquired with a total of seventeen available orthomosaic images, covering the whole flowering period for 299 rapeseed varieties. Five different machine learning methods were employed to identify and to extract the flowering areas in each plot. The results suggested that the accuracy of flowering area extraction by the decision tree-based segmentation model (DTSM) was higher than that of naive Bayes, K-nearest neighbours (KNN), random forest (RF) and support vector machine (SVM) in all varieties and flowering dates, with R2 = 0.97 and root mean square error (RMSE) = 0.051 pixels/pixels. Data on the proportion of flowering area and its dynamics showed differences in the time and duration of each flowering date among varieties. All varieties were classified into four clusters based on k-means clustering analysis. There were significant differences in eight phenotypic parameters among the four clusters, especially in the time of maximum flowering ratio and the time entering the early and medium flowering dates. The results from this study could provide a basis for rapeseed breeding based on flowering dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aballa, A., Cen, H., Wan, L., Mehmood, K., & He, Y. (2020). Nutrient Status Diagnosis of Infield Oilseed Rape via Deep Learning-enabled Dynamic Model.IEEE Trans. Ind. Inform.1–1

  • Abdalla, A., Cen, H., Abdel-Rahman, E., Wan, L., & He, Y. (2019a). Color Calibration of Proximal Sensing RGB Images of Oilseed Rape Canopy via Deep Learning Combined with K-Means Algorithm. Remote Sens, 11, 3001

    Article  Google Scholar 

  • Abdalla, A., Cen, H., Wan, L., Rashid, R., Weng, H., Zhou, W., & He, Y. (2019b). Fine-tuning convolutional neural network with transfer learning for semantic segmentation of ground-level oilseed rape images in a field with high weed pressure. Comput. Electron. Agric, 167, 105091

    Article  Google Scholar 

  • Abdalla, A., Cen, H., El-manawy, A., & He, Y. (2019c). Infield oilseed rape images segmentation via improved unsupervised learning models combined with supreme color features. Comput. Electron. Agric, 162, 1057–1068

    Article  Google Scholar 

  • Ahmed, O. S., Shemrock, A., Chabot, D., Dillon, C., Williams, G., Wasson, R., & Franklin, S. E. (2017). Hierarchical land cover and vegetation classification using multispectral data acquired from an unmanned aerial vehicle. Int. J. Remote Sens, 38, 2037–2052

    Article  Google Scholar 

  • Akhtar, A., Nazir, M., & Khan, S. A. (2012). Crop classification using feature extraction from satellite imagery. In 2012 15th International Multitopic Conference (INMIC), pp. 9–15

  • Araus, J. L., Elazab, A., Vergara, O., Cabrera-Bosquet, L., Serret, M. D., Zaman-Allah, M., & Cairns, J. E. (2015). In R. Phenomics, Fritsche-Neto, & A. Borém (Eds.), New Technologies for Phenotyping (pp. 1–14). Cham: Springer International Publishing

    Google Scholar 

  • Badillo, S., Banfai, B., Birzele, F., Davydov, I. I., Hutchinson, L., Kam-Thong, T. … Zhang, J. D. (2020). An Introduction to Machine Learning. Clin. Pharmacol. Ther, 107, 871–885

    Article  PubMed  PubMed Central  Google Scholar 

  • Brnabic, A., & Hess, L. M. (2021). Systematic literature review of machine learning methods used in the analysis of real-world data for patient-provider decision making. BMC Med. Inform. Decis. Mak, 21, 54

    Article  PubMed  PubMed Central  Google Scholar 

  • Campbell, D. C., & Kondra, Z. P. (1978). A genetic study of growth characters and yield characters of oilseed rape. Euphytica, 27, 177–183

    Article  Google Scholar 

  • de Castro, A., Torres-Sánchez, J., Peña, J., Jiménez-Brenes, F., Csillik, O., & López-Granados, F. (2018). An Automatic Random Forest-OBIA Algorithm for Early Weed Mapping between and within Crop Rows Using UAV Imagery. Remote Sens, 10, 285

    Article  Google Scholar 

  • Chapman, S. C., Merz, T., Chan, A., Jackway, P., Hrabar, S., Dreccer, M. F. … Jimenez-Berni, J. (2014). Pheno-Copter: A Low-Altitude, Autonomous Remote-Sensing Robotic Helicopter for High-Throughput Field-Based Phenotyping. Agronomy, 4, 279–301

    Article  Google Scholar 

  • Che, Y., Wang, Q., Xie, Z., Zhou, L., Li, S., Hui, F. … Ma, Y. (2020). Estimation of maize plant height and leaf area index dynamics using an unmanned aerial vehicle with oblique and nadir photography. Ann. Bot

  • Collins, W. J., & Wilson, J. H. (1974). Node of Flowering as an Index of Plant Development. Ann. Bot, 38, 175–180

    Article  Google Scholar 

  • Colomina, I., & Molina, P. (2014). Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS J. Photogramm. Remote Sens, 92, 79–97

    Article  Google Scholar 

  • Das Choudhury, S., Samal, A., & Awada, T. (2019). Leveraging Image Analysis for High-Throughput Plant Phenotyping.Front. Plant Sci.10

  • Duan, T., Zheng, B., Guo, W., Ninomiya, S., Guo, Y., & Chapman, S. C. (2017). Comparison of ground cover estimates from experiment plots in cotton, sorghum and sugarcane based on images and ortho-mosaics captured by UAV. Funct. Plant Biol, 44, 169

    CAS  Google Scholar 

  • Ferentinos, K. P. (2018). Deep learning models for plant disease detection and diagnosis. Comput. Electron. Agric, 145, 311–318

    Article  Google Scholar 

  • Furbank, R. T., & Tester, M. (2011). Phenomics – technologies to relieve the phenotyping bottleneck. Trends Plant Sci, 16, 635–644

    Article  CAS  PubMed  Google Scholar 

  • Giménez-Gallego, J., González-Teruel, J. D., Jiménez-Buendía, M., Toledo-Moreo, A. B., Soto-Valles, F., & Torres-Sánchez, R. (2020). Segmentation of Multiple Tree Leaves Pictures with Natural Backgrounds using Deep Learning for Image-Based Agriculture Applications. Appl. Sci, 10, 202

    Article  Google Scholar 

  • Guo, W., Rage, U. K., & Ninomiya, S. (2013). Illumination invariant segmentation of vegetation for time series wheat images based on decision tree model. Comput. Electron. Agric, 96, 58–66

    Article  Google Scholar 

  • Hartigan, J. A., & Wong, M. A. (1979). Algorithm AS 136: A K-Means Clustering Algorithm. J. R. Stat. Soc. Ser. C Appl. Stat, 28, 100–108

    Google Scholar 

  • Hu, P., Chapman, S. C., Wang, X., Potgieter, A., Duan, T., Jordan, D. … Zheng, B. (2018). Estimation of plant height using a high throughput phenotyping platform based on unmanned aerial vehicle and self-calibration: Example for sorghum breeding. Eur. J. Agron, 95, 24–32

    Article  Google Scholar 

  • Hu, P., Guo, W., Chapman, S. C., Guo, Y., & Zheng, B. (2019). Pixel size of aerial imagery constrains the applications of unmanned aerial vehicle in crop breeding. ISPRS J. Photogramm. Remote Sens, 154, 1–9

    Article  CAS  Google Scholar 

  • Jabbari, H., Akbari, G. A., Khosh Kholgh Sima, N. A., Rad, S., Alahdadi, A. H., Hamed, I., A., and, & Shariatpanahi, M. E. (2013). Relationships between seedling establishment and soil moisture content for winter and spring rapeseed genotypes. Ind. Crops Prod, 49, 177–187

    Article  Google Scholar 

  • Jełowicki, Ł., Sosnowicz, K., Ostrowski, W., Osińska-Skotak, K., & Bakuła, K. (2020). Evaluation of Rapeseed Winter Crop Damage Using UAV-Based Multispectral Imagery. Remote Sens, 12, 2618

    Article  Google Scholar 

  • Jin, X., Madec, S., Dutartre, D., de Solan, B., Comar, A., & Baret, F. (2019). High-Throughput Measurements of Stem Characteristics to Estimate Ear Density and Above-Ground Biomass. Plant Phenomics 2019, 1–10

  • Khatami, R., Mountrakis, G., & Stehman, S. V. (2016). A meta-analysis of remote sensing research on supervised pixel-based land-cover image classification processes: General guidelines for practitioners and future research. Remote Sens. Environ, 177, 89–100

    Article  Google Scholar 

  • Kohavi, R., & John, G. H. (1997). Wrappers for feature subset selection. Artif. Intell, 97, 273–324

    Article  Google Scholar 

  • Li, B., Xu, X., Zhang, L., Han, J., Bian, C., Li, G. … Jin, L. (2020). Above-ground biomass estimation and yield prediction in potato by using UAV-based RGB and hyperspectral imaging. ISPRS J. Photogramm. Remote Sens, 162, 161–172

    Article  Google Scholar 

  • Li, L., Zhang, Q., & Huang, D. (2014). A Review of Imaging Techniques for Plant Phenotyping. Sensors, 14, 20078–20111

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu, S., Jin, X., Nie, C., Wang, S., Yu, X., Cheng, M., Shao, M., Wang, Z., Tuohuti, N., Bai, Y., et al. (2021). Estimating leaf area index using unmanned aerial vehicle data: shallow vs. deep machine learning algorithms. Plant Physiol, 187, 1551–1576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, X., Small, J., Berdy, D., Katehi, L. P. B., Chappell, W. J., & Peroulis, D. (2011). Impact of Mechanical Vibration on the Performance of RF MEMS Evanescent-Mode Tunable Resonators. IEEE Microw. Wirel. Compon. Lett, 21, 406–408

    Article  Google Scholar 

  • Lu, Y., Du, C., Yu, C., & Zhou, J. (2014). Classifying rapeseed varieties using Fourier transform infrared photoacoustic spectroscopy (FTIR-PAS). Comput. Electron. Agric, 107, 58–63

    Article  Google Scholar 

  • MacKay, D. J. C. (2003). Chapter 20. An Example Inference Task: Clustering. Information theory, inference, and learning algorithms. Cambridge, UK; New York: Cambridge University Press

    Google Scholar 

  • Mai, X., Meng, M. Q. H. Automatic lesion segmentation from rice leaf blast field images based on random forest. In 2016 IEEE International Conference on Real-Time Computing and, & Robotics (2016). (RCAR), (Angkor Wat, Cambodia: IEEE), pp. 255–259

  • Mercier, A., Betbeder, J., Baudry, J., Le Roux, V., Spicher, F., Lacoux, J. … Hubert-Moy, L. (2020). Evaluation of Sentinel-1 & 2 time series for predicting wheat and rapeseed phenological stages. ISPRS J. Photogramm. Remote Sens, 163, 231–256

    Article  Google Scholar 

  • Minervini, M., Abdelsamea, M. M., & Tsaftaris, S. A. (2014). Image-based plant phenotyping with incremental learning and active contours. Ecol. Inform, 23, 35–48

    Article  Google Scholar 

  • Ng, A. (2021). Machine Learning Yearning-Draft

  • Panneton, B., & Brouillard, M. (2009). Colour representation methods for segmentation of vegetation in photographs. Biosyst. Eng, 102, 365–378

    Article  Google Scholar 

  • Philipp, I., & Rath, T. (2002). Improving plant discrimination in image processing by use of different colour space transformations. Comput. Electron. Agric, 35, 1–15

    Article  Google Scholar 

  • Raman, H., Raman, R., Coombes, N., Song, J., Prangnell, R., Bandaranayake, C., Tahira, R., Sundaramoorthi, V., Killian, A., Meng, J., et al. (2016). Genome-wide association analyses reveal complex genetic architecture underlying natural variation for flowering time in canola. Plant Cell Environ, 39, 1228–1239

    Article  CAS  PubMed  Google Scholar 

  • Rameeh, V. (2016). Multivariate analysis of some important quantitative traits in rapeseed (Brassica napus L.) advanced lines. J. Oilseed Brassica, 1, 75–82

    Google Scholar 

  • Rangel, B. M. S., Fernandez, M. A. A., Murillo, J. C., Ortega, P., J.C., and, & Arreguin, J. M. R. (2016). KNN-based image segmentation for grapevine potassium deficiency diagnosis. In 2016 International Conference on Electronics, Communications and Computers (CONIELECOMP), (Cholula: IEEE), pp. 48–53

  • Sankaran, S., Quirós, J. J., & Miklas, P. N. (2019). Unmanned aerial system and satellite-based high resolution imagery for high-throughput phenotyping in dry bean. Comput. Electron. Agric, 165, 104965

    Article  Google Scholar 

  • Singh, V., & Misra, A. K. (2017). Detection of plant leaf diseases using image segmentation and soft computing techniques. Inf. Process. Agric, 4, 41–49

    Google Scholar 

  • Su, J., Coombes, M., Liu, C., Zhu, Y., Song, X., Fang, S. … Chen, W. H. (2020). Machine Learning-Based Crop Drought Mapping System by UAV Remote Sensing RGB Imagery. Unmanned Syst, 08, 71–83

    Article  Google Scholar 

  • Szydłowska-Czerniak, A., Trokowski, K., Karlovits, G., & Szłyk, E. (2010). Determination of Antioxidant Capacity, Phenolic Acids, and Fatty Acid Composition of Rapeseed Varieties. J. Agric. Food Chem, 58, 7502–7509

    Article  PubMed  CAS  Google Scholar 

  • Usharani, M., Ramya, M., Shwetha, N., Soundarya, Y., & Rajkumar, V. (2019). OBJECT DETECTION AND TRACKING OF PLANTATION CROPS USING SVM ALGORITHM. Int. J. Appl. Eng. Res, 14, 7

    Google Scholar 

  • Wan, L., Cen, H., Zhu, J., Zhang, J., Zhu, Y., Sun, D., Du, X., Zhai, L., Weng, H., Li, Y., et al. (2020). Grain yield prediction of rice using multi-temporal UAV-based RGB and multispectral images and model transfer – a case study of small farmlands in the South of China. Agric. For. Meteorol, 291, 108096

    Article  Google Scholar 

  • Wang, N., Chen, B., Xu, K., Gao, G., Li, F., Qiao, J. … Wu, X. (2016). Association Mapping of Flowering Time QTLs and Insight into Their Contributions to Rapeseed Growth Habits. Front. Plant Sci. 7.

  • Wei, P., Jiang, T., Peng, H., Jin, H., Sun, H., Chai, D., & Huang, J. (2020). Coffee Flower Identification Using Binarization Algorithm Based on Convolutional Neural Network for Digital Images. Plant Phenomics 2020, 1–15

  • Wilke, N., Siegmann, B., Klingbeil, L., Burkart, A., Kraska, T., Muller, O. … Rascher, U. (2019). Quantifying Lodging Percentage and Lodging Severity Using a UAV-Based Canopy Height Model Combined with an Objective Threshold Approach. Remote Sens, 11, 515

    Article  Google Scholar 

  • Wu, J. (2012). Cluster Analysis and K-means Clustering: An Introduction. In J. Wu (Ed.), Advances in K-Means Clustering: A Data Mining Thinking (pp. 1–16). Berlin, Heidelberg: Springer

    Chapter  Google Scholar 

  • Yao, X., Wang, N., Liu, Y., Cheng, T., Tian, Y., Chen, Q., & Zhu, Y. (2017). Estimation of Wheat LAI at Middle to High Levels Using Unmanned Aerial Vehicle Narrowband Multispectral Imagery. Remote Sens, 9, 1304

    Article  Google Scholar 

  • Yue, J., Feng, H., Jin, X., Yuan, H., Li, Z., Zhou, C. … Tian, Q. (2018). A Comparison of Crop Parameters Estimation Using Images from UAV-Mounted Snapshot Hyperspectral Sensor and High-Definition Digital Camera. Remote Sens, 10, 1138

    Article  Google Scholar 

  • Zhang, H. (2004). The Optimality of Naive Bayes. In International Flairs Conference, p. 6

  • Zhang, C., Han, Y., Li, F., Gao, S., Song, D., Zhao, H. … Zhang, Y. (2019). A New CNN-Bayesian Model for Extracting Improved Winter Wheat Spatial Distribution from GF-2 imagery. Remote Sens, 11, 619

    Article  Google Scholar 

  • Zhang, J., Wang, C., Yang, C., Xie, T., Jiang, Z., Hu, T. … Xie, J. (2020a). Assessing the Effect of Real Spatial Resolution of In Situ UAV Multispectral Images on Seedling Rapeseed Growth Monitoring. Remote Sens, 12, 1207

    Article  Google Scholar 

  • Zhang, J., Xie, T., Yang, C., Song, H., Jiang, Z., Zhou, G. … Xie, J. (2020b). Segmenting Purple Rapeseed Leaves in the Field from UAV RGB Imagery Using Deep Learning as an Auxiliary Means for Nitrogen Stress Detection. Remote Sens, 12, 1403

    Article  Google Scholar 

  • Zhao, B., Li, J., Baenziger, P. S., Belamkar, V., Ge, Y., Zhang, J., & Shi, Y. (2020). Automatic Wheat Lodging Detection and Mapping in Aerial Imagery to Support High-Throughput Phenotyping and In-Season Crop Management. Agronomy, 10, 1762

    Article  Google Scholar 

Download references

Acknowledgements

This work was jointly supported by grants from the National Key Research and Development Program (2016YFD0300202) and Inner Mongolia Science and technology project (2019ZD024).

Author information

Authors and Affiliations

Authors

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ziwen Xie and Song Chen contribute equally to this work.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, Z., Chen, S., Gao, G. et al. Evaluation of rapeseed flowering dynamics for different genotypes with UAV platform and machine learning algorithm. Precision Agric 23, 1688–1706 (2022). https://doi.org/10.1007/s11119-022-09904-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-022-09904-4

Keywords

Navigation