Skip to main content

Advertisement

Log in

Impact of soil types on sugarcane development monitored over time by remote sensing

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

Soil is one of the most important factors for agricultural production. In tropical regions, soil variability is considerable, with the most diverse combinations of physical and chemical characteristics, an influence factor in crop growth and productivity. In this research, the main objective was to identify how soil characteristics and parent material can influence sugarcane development over time using remote sensing. An area located in Sao Paulo, Brazil, of 182 ha (one point per ha with soil analysis), with high variability in the parent material and soil types, was selected. Images from the Sentinel2-MSI satellite were used to describe the spectral behavior of sugarcane over a period of one year. The NDRE (normalized difference red-edge index) was calculated for each image and then the leaf area index (LAI) was obtained from it. Maps of soil classes, soil properties at two depths (0–0.20 and 0.80–1.0 m), and parent material classes were related to sugarcane LAI variability over time. Production environment zones, which is a classification based on soil characteristics to support sugarcane development, were also obtained and related to LAI variability. Spectral signatures of the crop presented different behaviors through the season, soil types and soil attributes provided useful responses for this variability. At the beginning of the season, the surface and subsurface soil properties (texture and fertility) impacted differently on crop development. On the other hand, soil classes and parent material influenced LAI in all production environments studied. The results indicated that the soil types and their properties at different depths have a significant impact on sugarcane development. Furthermore, RS was able to monitor the plant evolution and be related to soil types which may assist in plant management. The results can bring light on how better sugarcane management can be conducted using remote sensing data and soils variability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  • Aguiar, C. J., & Souza, P. M. (2014). Impactos do crescimento da produção de cana-de-açúcar na agricultura dos oito maiores estados produtores. (Impacts of sugarcane production growth on agriculture in the eight largest producing states.). Revista Ceres, 61(4), 482–493. https://doi.org/10.1590/0034-737X201461040006

    Article  Google Scholar 

  • Alvares, C. A., Stape, J. L., Sentelhas, P. C., de Moraes Gonçalves, J. L., & Sparovek, G. (2013). Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22(6), 711–728. https://doi.org/10.1127/0941-2948/2013/0507

    Article  Google Scholar 

  • Alves, V. N., Torres, J. L. R., Lana, R. M. Q., & Pinheiro, M. H. O. (2018). Nutrient cycling between soil and leaf litter in the Cerrado (Brazilian savanna) on eutrophic and dystrophic Neosols. Acta Botanica Brasilica, 32(2), 169–179. https://doi.org/10.1590/0102-33062017abb0369

    Article  Google Scholar 

  • Anderson, D. W. (1988). The effect of parent material and soil development on nutrient cycling in temperate ecosystems. Biogeochemistry, 5, 71–97. https://doi.org/10.1007/BF02180318

    Article  Google Scholar 

  • Aude, M. I. S. (1993). Estádios de desenvolvimento da cana-de-açúcar e suas relações com a produtividade. (Sugarcane development stages and their relationship with productivity.). Ciência Rural, Santa Maria, 23(2), 241–248.

    Article  Google Scholar 

  • Bazaglia Filho, O., Rizzo, R., Lepsch, I. F., do Prado, H., Gomes, F. H., Mazza, J. A., et al. (2013). Comparison between detailed digital and conventional soil maps of an area with a complex geology. Revista Brasileira de Ciência do Solo, 37(5), 1136–1148. https://doi.org/10.1590/S0100-06832013000500003

    Article  Google Scholar 

  • Bruning, B., Berger, B., Lewis, M., Liu, H., & Garnett, T. (2020). Approaches, applications, and future directions for hyperspectral vegetation studies: An emphasis on yield-limiting factors in wheat. The Plant Phenome Journal, 3(1), 1–22. https://doi.org/10.1002/ppj2.20007

    Article  Google Scholar 

  • Cardoso, T. F., Watanabe, M. D. B., Souza, A., Chagas, M. F., Cavalett, O., Morais, E. R., et al. (2019). A regional approach to determine economic, environmental, and social impacts of different sugarcane production systems in Brazil. Biomass and Bioenergy, 120(1), 9–20. https://doi.org/10.1016/j.biombioe.2018.10.018

    Article  Google Scholar 

  • Cerasoli, S., Campagnolo, M., Faria, J., Nogueira, C., & Da Conceição Caldeira, M. (2018). On estimating the gross primary productivity of Mediterranean grasslands under different fertilization regimes using vegetation index and hyperspectral reflectance. Biogeosciences, 15(17), 5455–5471. https://doi.org/10.5194/bg-15-5455-2018

    Article  CAS  Google Scholar 

  • Cheng, Y. B., Ustin, S. L., Riaño, D., & Vanderbilt, V. C. (2008). Water content estimation from hyperspectral images and MODIS indexes in Southeastern Arizona. Remote Sensing of Environment, 112, 363–374. https://doi.org/10.1016/j.rse.2007.01.023

    Article  Google Scholar 

  • Choudhury, B. J., Ahmed, N. U., Idso, S. B., Regitano, R. J., & Daughtry, C. S. T. (1994). Relations between evaporation coefficients and vegetation index studied by model simulations. Remote Sensing of Environment, 50, 1–17. https://doi.org/10.1016/0034-4257(94)90090-6

    Article  Google Scholar 

  • CONAB. (2018). Sugarcane Crop Tracking 2017/2018 (in Portuguese: Acompanhamento de Safra brasileira de cana 2017/2018). National Supply Company of Brazil, 4(4), 1–81.

    Google Scholar 

  • Corrêa, E. A., Moraes, I. C., da Cunha, C. M. L., & Pinto, S. A. F. (2018). Influência do cultivo de cana-de-açúcar nas perdas de solo por erosão hídrica em cambissolos no estado de São Paulo. (Influence of sugarcane cultivation on soil loss due to water erosion in cambisols in the state of São Paulo.). Revista Brasileira de Geomorfologia, 19(2), 231–243. https://doi.org/10.20502/rbg.v19i2.1303

    Article  Google Scholar 

  • de Matos, M., Santos, F., & Eichler, P. (2020). Sugarcane world scenario. In F. Santos, S. C. Rabelo, M. de Matos, & P. Eichler (Eds.), Sugarcane biorefinery, technology and perspectives (1st ed., pp. 1–19). Elsevier. https://doi.org/10.1016/b978-0-12-814236-3.00001-9

    Chapter  Google Scholar 

  • de Mello, D. C., Demattê, J. A. M., Silvero, N. E. Q., Di Raimo, L. A. D. L., Poppiel, R. R., Mello, F. A. O., et al. (2020). Soil magnetic susceptibility and its relationship with naturally occurring processes and soil attributes in pedosphere, in a tropical environment. Geoderma, 372, 114364. https://doi.org/10.1016/j.geoderma.2020.114364

    Article  CAS  Google Scholar 

  • de Oliveira, J. S., Inda, A. V., Barrón, V., Torrent, J., Tiecher, T., & de Oliveira Camargo, F. A. (2020). Soil properties governing phosphorus adsorption in soils of Southern Brazil. Geoderma Regional, 22, e00318. https://doi.org/10.1016/j.geodrs.2020.e00318

    Article  Google Scholar 

  • Demarchi, L. O., Scudeller, V. V., Moura, L. C., Dias-Terceiro, R. G., Lopes, A., Wittmann, F. K., et al. (2018). Floristic composition, structure, and soil-vegetation relations in three white-sand soil patches in central Amazonia. Acta Amazonica, 48(1), 46–56. https://doi.org/10.1590/1809-4392201603523

    Article  Google Scholar 

  • Demattê, J. A. M., Bellinaso, H., Romero, D. J., & Fongaro, C. T. (2014). Morphological Interpretation of Reflectance Spectrum (MIRS) using libraries looking towards soil classification. Scientia Agricola, 71(6), 509–520. https://doi.org/10.1590/0103-9016-2013-0365

    Article  Google Scholar 

  • Demattê, J. L. I., & Demattê, J. A. M. (2009). Ambientes de Produção como Estratégia de Manejo na Cultura da Cana-de-Açúcar. (Production Environments as a Management Strategy in Sugarcane Culture.). Informações Agronômicas, 127, 10–18.

    Google Scholar 

  • Demattê, J. A. M., Fongaro, C. T., Rizzo, R., & Safanelli, J. L. (2018). Geospatial Soil Sensing System (GEOS3): A powerful data mining procedure to retrieve soil spectral reflectance from satellite images. Remote Sensing of Environment, 212, 161–175. https://doi.org/10.1016/j.rse.2018.04.047

    Article  Google Scholar 

  • Demattê, J. A. M., Safanelli, J. L., Poppiel, R. R., Rizzo, R., Silvero, N. E. Q., Mendes, W. S., et al. (2020). Bare earth’s surface spectra as a proxy for soil resource monitoring. Scientific Reports, 10, 4461. https://doi.org/10.1038/s41598-020-61408-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donzelli, J. L., Bertolani, F. C., & de Trombeta, N. C. (2018). Sugarcane cultivation: Soil mapping, environmental effects, and new sugarcane varieties. In A. K. Chandel & M. H. L. Silveira (Eds.), Advances in sugarcane biorefinery (1st ed., pp. 1–15). Elsevier.

    Google Scholar 

  • Dormann, C. R., McPherson, J. M., Araújo, M. B., Bivand, R., Bolliger, J., & Carl, G. (2007). Methods to account for spatial autocorrelation in the analysis of species distributional data: A review. Ecography, 30(5), 609–628. https://doi.org/10.1111/j.2007.0906-7590.05171.x

    Article  Google Scholar 

  • EMBRAPA. (2009). Manual de análises químicas de solos, plantas e fertilizantes. (Manual of chemical analysis of soils, plants and fertilizers.) 2. ed. Embrapa Informática Agropecuária, Brasil.

  • Evangelides, C., & Nobajas, A. (2020). Red-Edge Normalised Difference Vegetation Index (NDVI705) from Sentinel-2 imagery to assess post-fire regeneration. Remote Sensing Applications: Society and Environment, 17, 100283. https://doi.org/10.1016/j.rsase.2019.100283

    Article  Google Scholar 

  • Filella, I., & Penuelas, J. (1994). The red edge position and shape as indicators of plant chlorophyll content, biomass, and hydric status. International Journal of Remote Sensing, 15(7), 1459–1470. https://doi.org/10.1080/01431169408954177

    Article  Google Scholar 

  • Gausman, H. W. (1985). Plant leaf optical properties in visible and near-infrared light. Graduate Studies Texas Tech University. https://doi.org/10.1080/01431168508948332

    Book  Google Scholar 

  • Gitelson, A. A., & Merzlyak, M. N. (1996). Signature analysis of leaf reflectance spectra: Algorithm development for remote sensing of chlorophyll. Journal of Plant Physiology, 148(3–4), 494–500. https://doi.org/10.1016/S0176-1617(96)80284-7

    Article  CAS  Google Scholar 

  • Gong, H., & Gao, J. (2019). Soil and climatic drivers of plant SLA (specific leaf area). Global Ecology and Conservation, 20, e00696. https://doi.org/10.1016/j.gecco.2019.e00696

    Article  Google Scholar 

  • Graves, S., Piepho, H.-P., & Selzer, M.L. (2019, December 19). Package ‘multcompView.’. Visualizations of paired comparisons. 1, 1–24. Retrieved March 20, 2020, from https://cran.r-project.org/web/packages/multcompView/index.html

  • Hattermann, D., Bernhardt-Römermann, M., Otte, A., & Eckstein, R. L. (2018). New insights into island vegetation composition and species diversity—Consistent and conditional responses across contrasting insular habitats at the plot scale. PLoS ONE, 13(7), e0200191. https://doi.org/10.1371/journal.pone.0200191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horler, D. N. H., Dockray, M., & Barber, J. (1983). The red edge of plant leaf reflectance. International Journal of Remote Sensing, 4(2), 273–288. https://doi.org/10.1080/01431168308948546

    Article  Google Scholar 

  • Inman-Bamber, N. G., & Smith, D. M. (2005). Water relations in sugarcane and response to water deficits. Field Crops Research, 92(2–3), 185–202. https://doi.org/10.1016/j.fcr.2005.01.023

    Article  Google Scholar 

  • Jacquemoud, S., & Baret, F. (1990). PROSPECT: A model of leaf optical properties spectra. Remote Sensing of Environment, 34(2), 75–91. https://doi.org/10.1016/0034-4257(90)90100-Z

    Article  Google Scholar 

  • Jacquemound, S., & Ustin, S. (2019). Leaf optical properties. University Printing House. https://doi.org/10.1017/9781108686457

    Book  Google Scholar 

  • Johnson, R. M., Grisham, M. P., Warnke, K. Z., & Maggio, J. R. (2016). Relationship of soil properties and sugarcane yields to Red Stripe in Louisiana. The American Phytopathological Society, 106(7), 737–744. https://doi.org/10.1094/PHYTO-09-15-0218-R

    Article  CAS  Google Scholar 

  • Landell, M. G. A., Prado, H. do, Vasconcelos, C. M. de, Perecin, D., Rossetto, R., Bidoia, M. A. P., et al (2003). Oxisol subsurface chemical attributes related to sugarcane productivity. Scientia Agricola, 60(4), 741–745. https://doi.org/10.1590/S0103-90162003000400020

    Article  CAS  Google Scholar 

  • Luchiari Junior, A., Borghi, E., Avanzi, J. C., de Freitas, A. A., Bortolon, L., Bortolon, E. S. O., et al. (2011). Zonas de Manejo: teoria e prática. (Management Zones: theory and practice.) In A. C. de C. Bernardi, J. de M. Naime, A. V. Resende, L. H. Bassoi, & R. Y. Inamasu (Eds.), Agricultura de precisão: um novo olhar. (Precision farming: A new look.) (1st ed., pp. 60–64). Embrapa Instrumentação.

  • Maule, R. F., Mazza, J. A., & Martha, G. B., Jr. (2001). Productivity of sugarcane cultivars in different soils and harvesting periods. Scientia Agricola, 58(2), 295–301. https://doi.org/10.1590/S0103-90162001000200012

    Article  Google Scholar 

  • Medorio-García, H. P., Alarcón, E., Flores-Esteves, N., Montaño, N. M., & Perroni, Y. (2020). Soil carbon, nitrogen and phosphorus dynamics in sugarcane plantations converted from tropical dry forest. Applied Soil Ecology, 154, 103600. https://doi.org/10.1016/j.apsoil.2020.103600

    Article  Google Scholar 

  • Morel, J., Todoroff, P., Bégué, A., Bury, A., Martiné, J. F., & Petit, M. (2014). Toward a satellite-based system of sugarcane yield estimation and forecasting in smallholder farming conditions: A case study on reunion island. Remote Sensing, 6(7), 6620–6635. https://doi.org/10.3390/rs6076620

    Article  Google Scholar 

  • Nanni, M. R., & Demattê, J. A. M. (2006). Spectral reflectance methodology in comparison to traditional soil analysis. Soil Science Society of America Journal, 70(2), 393–407. https://doi.org/10.2136/sssaj2003.0285

    Article  CAS  Google Scholar 

  • Neuwirthová, E., Lhotáková, Z., & Albrechtová, J. (2017). The effect of leaf stacking on leaf reflectance and vegetation index measured by contact probe during the season. Sensors, 17(6), 1202. https://doi.org/10.3390/s17061202

    Article  PubMed Central  Google Scholar 

  • Pebesma, E. J. (2004). Multivariable geostatistics in S: The gstat package. Computers & Geosciences, 30(7), 683–691. https://doi.org/10.1016/j.cageo.2004.03.012

    Article  Google Scholar 

  • Prado, H., & Vitti, A. C (2013). Solos e ambientes de produção de cana-de-açúcar na região Centro-sul do Brasil. (Soils and sugarcane production environments in the Center-South region of Brazil.) IAC (Agronomic Institute of Campinas), 1–47.

  • Pu, R., & Landry, S. (2019). Evaluating seasonal effect on forest leaf area index mapping using multi-seasonal high-resolution satellite Pleiades imagery. International Journal of Applied Earth Observation and Geoinformation, 80, 268–279. https://doi.org/10.1016/j.jag.2019.04.020

    Article  Google Scholar 

  • Quaggio, J. A., & Van Raij, B. (2001). Determinação do pH em cloreto de cálcio e da acidez total. (Determination of pH in calcium chloride and total acidity.). In B. Van Raij, J. C. Andrade, H. Cantarella, & J. A. Quaggio (Eds.) Análise química para avaliação da fertilidade de solos tropicais (Chemical analysis to assess the fertility of tropical soils.) (1st ed., pp.181–188). IAC.

  • R Core Team. (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing.

  • Rodrigues, M., Nanni, M. R., Silveira, C. A. P., Cezar, E., dos Santos, L. A. A. G., Furlanetto, R. H., et al. (2020). Mining co-products as sources of multi-nutrients for cultivation of Brachiaria ruziziensis. Natural Resources Research, 30, 849–865. https://doi.org/10.1007/s11053-020-09745-w

    Article  CAS  Google Scholar 

  • Ronquim, C. C. (2010). Conceitos de fertilidade do solo e manejo adequado para as regiões tropicais. (Concepts of soil fertility and proper management for tropical regions.). EMBRAPA, 1(1), 1–26.

    Google Scholar 

  • Rossetto, R., Dias, F. L. F., Vitti, A. C., & Cantarella H. (2014). Fertility maintenance and Soil recovery in sugarcane crops. In Sugarcane bioethanol—R&D for productivity and sustainability (pp. 381–404). Editora Edgard Blücher. https://doi.org/10.5151/BlucherOA-Sugarcane-SUGARCANEBIOETHANOL_38

  • Rossi Neto, J., de Souza, Z. M., Oliveira, S. R. M., Kölln, O. T., Ferreira, D. A., Carvalho, J. L. N., et al. (2017). Use of decision tree technique to estimate sugarcane productivity under edaphoclimatic conditions. Sugar Tech, 19(6), 662–668. https://doi.org/10.1007/s12355-017-0509-7

    Article  CAS  Google Scholar 

  • Sanaei, A., Li, M., & Ali, A. (2019). Topography, grazing, and soil textures control over rangelands’ vegetation quantity and quality. Science of the Total Environment, 697, 134153. https://doi.org/10.1016/j.scitotenv.2019.134153

    Article  CAS  PubMed  Google Scholar 

  • Sanches, G. M., Magalhães, P. S. G., & Franco, H. C. J. (2019). Site-specific assessment of spatial and temporal variability of sugarcane yield related to soil attributes. Geoderma, 334, 90–98. https://doi.org/10.1016/j.geoderma.2018.07.051

    Article  Google Scholar 

  • Sanches, G. M., Paula, M. T. N., Magalhães, P. S. G., Duft, D. G., Vitti, A. C., Kolln, O. T., et al. (2017). Precision production environments for sugarcane fields. Scientia Agricola, 76(1), 10–17. https://doi.org/10.1590/1678-992X-2017-0128

    Article  Google Scholar 

  • SiBCS. (2018). Sistema Brasileiro de Classificação de Solos 5ª Edição. (Brazilian soil classification system) (5th ed.). EMBRAPA.

    Google Scholar 

  • Simões, M. S., Rocha, J. V., & Lamparelli, R. A. C. (2005). Indicadores de crescimento e produtividade da cana-de-açúcar. (Sugarcane growth and productivity indicators.). Scientia Agricola, 62(1), 23–30. https://doi.org/10.1590/S0103-90162005000100005

    Article  Google Scholar 

  • Souza, Z. M., Cerri, D. G. P., Magalhães, P. S. M., & Siqueira, D. S. (2010). Spatial variability of soil attributes and sugarcane yield in relation to topographic location. Revista Brasileira de Engenharia Agrícola e Ambiental, 14(12), 1250–1256. https://doi.org/10.1590/S1415-43662010001200001

    Article  Google Scholar 

  • Sun, Y., Qin, Q., Ren, H., Zhang, T., & Chen, S. (2020). Red-edge band vegetation index for leaf area index estimation from Sentinel-2/MSI imagery. IEEE Transactions on Geoscience and Remote Sensing, 58(2), 826–840. https://doi.org/10.1109/TGRS.2019.2940826

    Article  Google Scholar 

  • Tan, C. W., Zhang, P. P., Zhou, X. X., Wang, Z. X., Xu, Z. Q., Mao, W., et al. (2020). Quantitative monitoring of leaf area index in wheat of different plant types by integrating NDVI and Beer-Lambert law. Scientific Reports, 10(929), 1–10. https://doi.org/10.1038/s41598-020-57750-z

    Article  CAS  Google Scholar 

  • Teixeira, P. C., Donagemma, G. K., Fontana, A., & Teixeira, W. G. (2017). Manual de Métodos de Análise de Solo. (Soil analysis methods manual.). EMBRAPA.

  • Vanino, S., Nino, P., De Michele, C., Bolognesi, S. F., D’Urso, G., Di Bene, C., et al. (2018). Capability of Sentinel-2 data for estimating maximum evapotranspiration and irrigation requirements for tomato crop in Central Italy. Remote Sensing of Environment, 215, 452–470. https://doi.org/10.1016/j.rse.2018.06.035

    Article  Google Scholar 

  • Vitti, A. C., & do Prado, H. (2012). Produtividade da cana-de-açúcar em função do ambiente e disponibilidade hídrica. (Sugarcane productivity as a function of the environment and water availability.). Apta Regional, 9(2), 1–6.

    Google Scholar 

  • Wan, J. Z., Yu, J. H., Yin, G. J., Song, Z. M., Wei, D. X., & Wang, C. J. (2019). Effects of soil properties on the spatial distribution of forest vegetation across China. Global Ecology and Conservation, 18, e00635. https://doi.org/10.1016/j.gecco.2019.e00635

    Article  Google Scholar 

  • Wang, M., Liu, Z., Ali Baig, M. H., Wang, Y., Li, Y., & Chen, Y. (2019). Mapping sugarcane in complex landscapes by integrating multi-temporal Sentinel-2 images and machine learning algorithms. Land Use Policy, 88, 104190. https://doi.org/10.1016/j.landusepol.2019.104190

    Article  Google Scholar 

  • WRB. (2015). World reference base for soil resources 2014. Food and Agriculture Organization of the United Nations.

  • Zarco-Tejada, P. J., Hornero, A., Hernández-Clemente, R., & Beck, P. S. A. (2018). Understanding the temporal dimension of the red-edge spectral region for forest decline detection using high-resolution hyperspectral and Sentinel-2a imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 137, 134–148. https://doi.org/10.1016/j.isprsjprs.2018.01.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank FAPESP for granting the scholarship to the first author, the National Scholarship Program “Don Carlos Antonio López” (BECAL) of the Government of Paraguay for granting the scholarship to the second author and the GEOCIS group (https://esalqgeocis.wixsite.com/english).

Funding

This research was funded by FAPESP (2014/22262-0 and 2018/12532-0).

Author information

Authors and Affiliations

Authors

Contributions

Methodology: MTAA, NEQS, JAMD; Writing (original draft preparation): MTAA, NEQS, JAMD; Writing (review and editing): MTAA, NEQS, HB, AMRG, LTG, LRC, JAMD; Funding acquisition: JAMD; Supervision: JAMD.

Corresponding author

Correspondence to José A. M. Demattê.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amorim, M.T.A., Silvero, N.E.Q., Bellinaso, H. et al. Impact of soil types on sugarcane development monitored over time by remote sensing. Precision Agric 23, 1532–1552 (2022). https://doi.org/10.1007/s11119-022-09896-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-022-09896-1

Keywords

Navigation