Skip to main content

Field methods for making productivity classes for site-specific management of wheat


Reducing the decision-making unit to classes within fields can improve yields, efficiency in the use of nutrients and profitability of crops. The objectives were to compare methods for class delimitation in wheat (Triticum aestivum L.) crops based on apparent productivity levels and establish similarities among them in terms of spatial overlapping, productive attributes and the use of nitrogen. In three wheat fields, high and low apparent productivity classes (APC) were defined based on eight methodologies: yield maps, soil maps, gramineae vegetation index, rotation crop index, interpretation of satellite images, management records, elevation and integrated soil and yield maps. In each APC, soil and crop yield components were determined under five nitrogen fertilization levels. Among delimitation methodologies, the degree of coincidence varied from 1.4 to 81.7%. The differences in soil properties, nitrogen use efficiency and grain yields were greater among fields than among APC within each field. In each field, the delimitation methodologies identified different single factors that discriminated among the potential management classes and were partially associated with the crop grain yields. The wheat crops at the low APC yielded 39% less and 12% less than at the high APC, respectively. The nitrogen fertilization, at the rate for maximum productivity for each ACP, reduced the yield differences between contrasting APC. Nitrogen fertilization also modified clustering of classes based on expected yields. Making management classes for wheat based on expected productivity is more accurate when based on previous crop production information under similar nitrogen fertilization conditions than the targeted crop.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Data availability

The raw data support the findings of this study are available from the corresponding authors, M.J.L.S. and M.D.Z., upon reasonable request.



Apparent productivity classes

ECa :

Apparent electrical conductivity




Global navigation satellite system


National Institute for Agricultural Technology


Management records




Available nitrogen levels


Normalized and differential vegetation indexes


Normalized and differential vegetation indexes of crop rotation


Normalized and differential vegetation indexes of gramineae


Nitrogen use efficiency


Organic matter index


Observed productivity classes




Photo interpretation of satellite images


Soil mapping


Soil organic carbon


Standardized sum


Yield mapping


Grain yield increase associated with nitrogen


  • Alvarez, R., & Grigera, S. (2005). Analysis of soil fertility and management effects on yields of wheat and corn in the rolling Pampa of Argentina. Agronomy and Crop Science, 191, 321–321.

    Article  Google Scholar 

  • Arnall, D. B., & Mullen, R. W. (2011). Review of low and high technology nitrogen management approaches for improved nitrogen use efficiency. In D. E. Clay & J. F. Shanahan (Eds.), GIS applications applications in agriculture. (Vol. 2). CRC Press.

    Google Scholar 

  • Blake, G. R., & Hartge, K. H. (1986). Bulk density. In A. Klute (Ed.), Methods of soil analysis (2nd ed., pp. 363–382). Agronomy Monograph 9, American Society of Agronomy and Soil Science Society of America.

    Google Scholar 

  • Bongiovanni, R., Robledo, C. W., & Lambert, D. M. (2007). Economics of site-specific nitrogen management for protein content in wheat. Computers and Electronics in Agriculture, 58, 13–24.

    Article  Google Scholar 

  • Bremmer, J. M. (1996). Nitrogen total. In D. L. Sparks (Ed.), Methods of soil analysis (5th ed., pp. 1085–1121). Soil Science Society of America.

    Google Scholar 

  • Bunselmeyer, H. A., & Lauer, J. G. (2015). Using corn and soybean yield history to predict subfield yield response. Agronomy Journal, 107(2), 558–562.

    Article  Google Scholar 

  • Chang, J., Clay, D. E., Carlson, C. G., Clay, S. A., Malo, D. D., Berg, R., et al. (2003). Different techniques to identify management zones impact nitrogen and phosphorus sampling variability. Agronomy Journal, 95, 1550–1559.

    Article  Google Scholar 

  • Cohen, J. (1968). Weighed kappa: Nominal scale agreement with provision for scaled disagreement or partial credit. Psychological Bulletin, 70(4), 213–220.

    CAS  Article  Google Scholar 

  • Cox, M., & Gerard, P. (2007). Soil management zone determination by yield stability analysis and classification. Agronomy Journal, 99, 1357–1365.

    CAS  Article  Google Scholar 

  • Den Biggelaar, C., Lal, R., Wiebe, K., & Breneman, V. (2001). Impact of soil erosion on crop yields in North America. Advances in Agronomy, 72, 1–52.

    Article  Google Scholar 

  • Derby, N. E., Casey, F. X., & Franzen, D. W. (2007). Comparison of nitrogen management zone delineation methods for corn grain yield. Agronomy Journal, 99, 405–414.

    CAS  Article  Google Scholar 

  • Di Rienzo, J. A., Casanoves, F., Balzarini, M. G., Gonzalez, L., Tablada, M., & Robledo, C. W. (2011). InfoStat ver 2011. InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. Retrieved September 20, 2021 from

  • Fleming, K. L., Heermann, D. R., & Westfall, D. G. (2004). Evaluating soil color with farmer input and apparent soil electrical conductivity for management zone delineation. Agronomy Journal, 96, 1581–1587.

    Article  Google Scholar 

  • Fridgen, J. J., Kitchen, N. R., Sudduth, K. A., Drummond, S. T., Wiebold, W. J., & Fraisse, C. W. (2004). Management zone analyst (MZA): Software for subfield management zone delineation. Agronomy Journal, 96, 100–108.

    Article  Google Scholar 

  • Grant, C. A., Moulin, A. P., & Tremblay, N. (2016). Nitrogen management effects on spring wheat yield and protein concentration vary with seeding date and slope position. Agronomy Journal, 108, 1246–1256.

    CAS  Article  Google Scholar 

  • Hornung, A., Khosla, R., Reich, R., Inman, D., & Westfall, D. G. (2006). Comparison of site-specific management zones: Soil-color-based and yield-based. Agronomy Journal, 98, 407–415.

    Article  Google Scholar 

  • Kuo, S. (1996). Phosphorus. In D. L. Sparks (Ed.), Methods of soil analysis (Part 3) (pp. 869–919). American Society of Agronomy and Soil Science Society of America.

    Google Scholar 

  • Mittermayer, M., Gilg, A., Maidl, F. X., Natscher, L., & Hulsbergen, K. J. (2021). Site-specific nitrogen balances based on spatially variable soil and plant properties. Precision Agriculture, 22, 1416–1436.

    Article  Google Scholar 

  • Moharana, P. C., Jena, R. K., Pradhan, U. K., Nogiya, M., Tailor, B. L., Singh, R. S., et al. (2020). Geostatistical and fuzzy clustering approach for delineation of site-specific management zones and yield-limiting factors in irrigated hot arid environment of India. Precision Agriculture, 21, 426–448.

    Article  Google Scholar 

  • Monzon, J. P., Calviño, P. A., Sadras, V. O., Zubiaurre, J. B., & Andrade, F. H. (2018). Precision agriculture based on crop physiological principles improves whole-farm yield and profit: A case study. European Journal of Agronomy, 99, 62–71.

    Article  Google Scholar 

  • Moral, F., Terron, M., & da Marquez, S. (2010). Delineation of management zone using mobile measurements of soil apparent electrical conductivity and multivariate geostatistical techniques. Soil and Tillage Research, 106, 335–342.

    Article  Google Scholar 

  • National Institute for Agricultural Technology. (1965). Soil maps of the Argentine Republic. Record at 3560–4 Capitán Sarmiento (In Spanish.). 1st ed. Buenos Aires, Argentina: INTA. Retrieved September 20, 2021, from

  • Nelson, D. W., & Sommers, L. E. (1996). Total carbon, organic carbon, and organic matter. In D. L. Sparks (Ed.), Methods of soil analysis (pp. 961–1010). American Society of Agronomy and Soil Science Society of America.

    Google Scholar 

  • Ortega, R. A., & Santibáñez, O. A. (2007). Determination of management zone in corn (Zea mays L.) based on soil fertility. Computers and Electronics in Agriculture, 58, 49–59.

    Article  Google Scholar 

  • Reitsma, K. D., Heimer, R. K., & Schumacher, T. E. (2011). Estimating soil productivity and energy efficiency using the USDA Web Soil Survey, soil productivity index calculator, and calculator, and biofuel energy systems simulator. In D. E. Clay & J. F. Shanahan (Eds.), GIS applications in agriculture. Nutrient management for energy efficiency (Vol. 2, pp. 425–443). CRC Press.

    Google Scholar 

  • Roel, A., & Plant, R. E. (2004). Spatiotemporal analysis of rice yield variability in two California fields. Agronomy Journal, 96, 77–90.

    Article  Google Scholar 

  • Scharf, P. C., Kitchen, N. R., Sudduth, K. A., Davis, J. G., Hubbard, V. H., & Lory, J. A. (2005). Field-scale variability in optimal nitrogen fertilizer rate for corn. Agronomy Journal, 97, 452–461.

    Article  Google Scholar 

  • Schwalbert, R. A., Amado, T. J. C., Reimche, G. B., & Gebert, F. (2019). Fine-tuning of wheat (Triticum aestivum, L.) variable nitrogen rate by combining crop sensing and management zones approaches in southern Brazil. Precision Agriculture, 20, 56–77.

    Article  Google Scholar 

  • Servadio, P., Bergonzoli, S., & Verotti, M. (2017). Delineation of management zones based on soil mechanical-chemical properties to apply variable rates of inputs throughout a field (VRA). Engineering in Agriculture, Environment and Food, 10, 20–30.

    Article  Google Scholar 

  • Simbahan, G. C., Dobermann, A., & Ping, J. L. (2004). Screening yield monitor data improves grain yield maps. Agronomy Journal, 96, 1091–1102.

    Article  Google Scholar 

  • Taylor, J. A., McBratney, A. B., & Whelan, B. M. (2007). Establishing management classes for broadacre agricultural production. Agronomy Journal, 99, 1366–1376.

    Article  Google Scholar 

  • Terra, J. A., Shaw, J. N., Reeves, D. W., Raper, R. L., Van Santen, E., Schwab, E. B., et al. (2006). Soil management and landscape variability affects field-scale cotton productivity. Soil Science Society of America Journal, 70, 98–107.

    CAS  Article  Google Scholar 

  • Walter, N. F., Hallberg, G. R., & Fenton, T. E. (1978). Particle size analysis by the Iowa State University soil survey laboratory. In G. R. Hallberg (Ed.), Standard procedures for evaluation of quaternary materials in Iowa (pp. 61–90). Iowa Geological Survey.

    Google Scholar 

  • Wong, M. T., & Asseng, S. (2006). Determining the causes of spatial and temporal variability of wheat yields at sub-field scale using a new method of up scaling a crop model. Plant and Soil, 283, 203–215.

    CAS  Article  Google Scholar 

  • Zadok, J. S., Chang, T. T., & Konzak, C. F. (1974). A decimal code for the growth stages of cereals. Weed Research, 14, 415–421.

    Article  Google Scholar 

  • Zubillaga, M. M., Carmona, M., Latorre, A., Falcon, M., & Barros, M. J. (2006). Spatial structure of edaphic variables at field scale in Vedia. (In Spanish.). Argentine Soil Science Congress (20th, pp. 28–30). Salta, Argentina: Asociación Argentina Ciencia del Suelo.

  • Zubillaga, M. M., Redel, H. M., & Cabrera, M. L. (2020). Assessment of apparent N mineralization at field scale. Soil Use and Management, 37(3), 418–426.

    Article  Google Scholar 

Download references


Funding for this research project was provided by INTA MSE AP I177.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Marcelo José López de Sabando.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

López de Sabando, M.J., Diaz-Zorita, M. Field methods for making productivity classes for site-specific management of wheat. Precision Agric 23, 1153–1173 (2022).

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Site-specific analysis
  • Wheat
  • Nitrogen
  • Dryland cropping systems