Skip to main content

Advertisement

Log in

Do water dynamics and land use in riparian areas change the spatial pattern of physical–mechanical properties of a Cambisol?

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

Changes in land use in riverside ecosystems added to the flood and ebb regimes of rivers modify the spatial variability of the physical–mechanical attributes of soil, making it more susceptible to degradation processes, especially during the rainy season. The aim of this study was to evaluate the impact of the use of a Eutric Cambisol, which was cultivated with banana trees, on the pattern of spatial variability of physical–mechanical attributes of the soil under two states of consistency in riparian zones of the Ribeira de Iguape River, São Paulo, Brazil. After the flood period, soil samples were collected from 0.0 to 0.2 m soil depth up to 200 m perpendicular from the river. The study of the spatial variability of soil attributes is considered to be one of the principles of precision agriculture enabling site-specific management. Such data can be used for interpolation, the use of inverse weighted distance (IDW) was chosen, a widely used deterministic method for multivariate interpolation. The following soil attributes were measured: particle-size distribution (clay, silt and sand), water content, bulk density (initial and preconsolidation pressure), cone index, compression index and preconsolidation pressure. The effects of flood and ebb periods on the resilience of these attributes in the Ribeira de Iguape River were evaluated by subjecting the soil to solid and plastic states of soil consistency. The pattern of spatial variation of the physical–mechanical attributes of the Eutric Cambisol was modified: spatial continuity in the soil attributes was greater under smaller water contents (ebb) and less, i.e. greater spatial variation, under flood conditions. The physical and mechanical qualities of the Eutric Cambisol were more affected in the soil closer to the water body. Extreme changes in the load-bearing capacity of the soil with high solid states and weak plastic states consistencies show its susceptibility to structural degradation, mainly under the river flood regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aguiar Junior, T. R., Rasera, K., Parron, L. M., Brito, A. G., & Ferreira, M. T. (2015). Nutrient removal effectiveness by riparian buffer zones in rural temperate watersheds: The impact of no-till crops practices. Agriculture Water Management, 149, 74–80. https://doi.org/10.1016/j.agwat.2014.10.031

    Article  Google Scholar 

  • Al-Shayea, N. A. (2001). The combined effect of clay and moisture content on the behavior of remolded unsaturated soils. Engineering Geology., 62(4), 319–342. https://doi.org/10.1016/S0013-7952(01)00032-1

    Article  Google Scholar 

  • Alvares, C. A., Stape, J. L., Sentelhas, P. C., Gonçalves, J. L. M., & Sparovek, G. (2013). Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22(6), 711–728. https://doi.org/10.1127/0941-2948/2013/0507

    Article  Google Scholar 

  • Araújo, R., Goedert, W. J., & Lacerda, M. P. C. (2007). Qualidade de um solo sob diferentes usos e sob cerrado nativo (Soil quality under different uses and native Cerrado). Revista Brasileira De Ciência Do Solo., 31(5), 1099–1108.

    Article  Google Scholar 

  • Babak, O., & Deutsch, C. V. (2009). Statistical approach to inverse distance interpolation. Stochastic Environmental Research and Risk Assessment, 23(5), 543–553.

    Article  Google Scholar 

  • Babak, O. (2014). Inverse distance interpolation for facies modeling. Stochastic Environmental Research and Risk Assessment, 28(6), 1373–1382. https://doi.org/10.1007/s00477-013-0833-8

    Article  Google Scholar 

  • Bond, N. R., Burrows, R. M., Kennard, M. J., & Bunn, S. E. (2019). Water scarcity as a driver of multiple stressor effects. In: S. Sabater, A. Elosegi, R. Ludwig (Eds.), Multiple stressors in river ecosystems (pp. 111–129). Cambridge, MA, USA: Elsevier Academic Press. https://doi.org/10.1016/B978-0-12-811713-2.00006-6.

  • Botero-Acosta, A., Chu, M. L., Guzman, J. A., Starks, P. J., & Moriasi, D. N. (2017). Riparian erosion vulnerability model based on environmental features. Journal of Environment Management, 203(1), 592–602. https://doi.org/10.1016/j.jenvman.2017.02.045

    Article  Google Scholar 

  • Brasil, 2012. Lei No. 12.651, de 25 de maio de 2012. Dispõe sobre a proteção da vegetação nativa e dá outras providências. Diário Oficial da República Federativa do Brasil, Poder Executivo, Brasília, DF, 28 maio 2012 (Law No. 12.651 of May 25, 2012. Provides for the protection of native vegetation and other measures. Official Gazette of the Federative Republic of Brazil, Executive Branch, Brasília, DF, 28 May 2012). Retrieved November, 2021, from www.planalto.gov.br

  • Brouder, S. M., Hofmann, B. S., & Morris, D. K. (2005). Mapping soil pH: Accuracy of common soil sampling strategies and estimation techniques. Soil Science Society of America Journal, 69(2), 427–442. https://doi.org/10.2136/sssaj2005.0427

    Article  CAS  Google Scholar 

  • Burrough, P. A. (1986). Principles of geographical information systems for land resources assessment. Oxford, UK: Clarendon Press.

    Book  Google Scholar 

  • Celentano, D., Rousseau, G. X., Engel, V. L., Zelarayán, M., Oliveira, E. C., Araujo, et al. (2016). Degradation of riparian forest affects soil properties and ecosystem services provision in eastern Amazon of Brazil. Land Degradation and Development. 28(2), 482–493. https://doi.org/10.1002/ldr.2547.

  • CBH-RB - Comitê da Bacia Hidrográfica do Ribeira de Iguape e Litoral Sul. 2019. Relatório de Situação dos Recursos Hídricos da UGRHI 11 – 2018 – Ano-Base 2017 (Committee for the Ribeira de Iguape and Litoral Sul River Basin. 2019. UGRHI Water Resources Situation Report 11 – 2018 – Base Year 2017). Retrieved November, 2021, from https://www.sigrh.sp.gov.br/public/uploads/documents//CBH-RB/17551/relatorio-de-situacao-2019-versao-final-27-09-19.pdf

  • Conde, R. P., & Yamamoto, J. K. (1996). Avaliação de reservas por métodos computacionais: Um estudo de caso na mina de canoas 2 (PR) (Ore reserve estimation by computational methods: A case study in Canoas 2 mine PR). Revista Brasileira De Geociências, 26(1), 35–42.

    Article  CAS  Google Scholar 

  • Cortez, L. A., Marques Júnior, J., Peluco, R. G., Siqueira, D. S., Siansi, F. L., Barbosa, R. S., et al. (2020). Subsoiling of an oxisol at fixed and varying depth in areas under sugarcane. Precision Agriculture, 21, 1351–1365.

    Article  Google Scholar 

  • Daniels, R. B., & Nelson, L. A. (1978). Soil variability and productivity: Future developments. In L. L. Boersma Chair (Ed.), Future developments in soil science research (pp. 279–291). Madison, WI, USA: Soil Science Society of America Journal.

    Google Scholar 

  • Dec, D., Dörner, J., & Balocchi, O. (2011). Temporal and spatial variability of structure dependent properties of a volcanic ash soil under pasture in southern Chile. Chilean Journal of Agricultural Research., 71(2), 293–303. https://doi.org/10.4067/S0718-58392011000200015

    Article  Google Scholar 

  • Deng, L., Wang, K. B., Zhu, G. Y., Liu, Y. L., Chen, L., & Shangguan, Z. P. (2018). Changes of soil carbon in five land use stages following 10years of vegetation succession on the Loess Plateau, China. Catena, 171, 185–192. https://doi.org/10.1016/j.catena.2018.07.014

    Article  CAS  Google Scholar 

  • Dias Junior, M. S., & Pierce, F. J. (1995). A simple procedure for estimating preconsolidation pressure from soil compression curve. Soil Technology., 8(2), 139–151. https://doi.org/10.1016/0933-3630(95)00015-8

    Article  Google Scholar 

  • Diodato, N., & Ceccarelli, M. (2005). Interpolation processes using multivariate geostatistics for mappin of climatological precipitation mean in the Sannio Mountains (southern Italy). Earth Surface Process and Landforms., 30(3), 259–268.

    Article  Google Scholar 

  • Dominati, E., Patterson, M., & Mackay, A. (2010). A framework for classifying and quantifying the natural capital and ecosystem services of soils. Ecological Economics, 69(9), 1858–1868. https://doi.org/10.1016/j.ecolecon.2010.05.002

    Article  Google Scholar 

  • Esteban, D. A., Souza, Z. M., Tormena, C. A., Lovera, L. H., Lima, E. S., Oliveira, I. N., et al. (2019). Soil compaction, root system and productivity of sugarcane under different row spacing and controlled traffic at harvest. Soil and Tillage Research, 187, 60–71.

    Article  Google Scholar 

  • Hamza, M. A., & Anderson, W. K. (2005). Soil compaction in cropping systems: A review of the nature, causes and possible solutions. Soil and Tillage Research, 82(2), 121–145. https://doi.org/10.1016/j.still.2004.08.009

    Article  Google Scholar 

  • Hough, B. (1969). Basic soil engineering. New York, USA: Ronald Press Company.

    Google Scholar 

  • Iori, P., Silva, R. B., Dias Junior, M. S., & Lima, J. M. (2012). Pressão de preconsolidação como ferramenta de análise da sustentabilidade estrutural de classes de solos com diferentes usos (Preconsolidation pressure as a tool for sustainability analysis of soil structure of soil classes under different uses). Revista Brasileira De Ciência Do Solo., 36(5), 1448–1456. https://doi.org/10.1590/S0100-06832012000500008

    Article  Google Scholar 

  • Iori, P., Silva, R. B., Dias Junior, M. S., Nakamura, R., & Almeida, L. C. F. (2019). Soil quality analysis in riparian areas for soil and water resource management. Archives of Agronomy and Soil Science., 66(5), 572–585. https://doi.org/10.1080/03650340.2019.1630822

    Article  CAS  Google Scholar 

  • Isaaks, E. H., & Srivastava, R. M. (1989). An introduction to applied geostatistics (p. 560). New York, USA: Oxford University.

    Google Scholar 

  • IUSS Working Group WRB. (2015). World reference base for soil resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. Rome, Italy: FAO.

  • Keesstra, S. D., Kondrlova, E., Czajka, A., Seeger, M., & Maroulis, J. (2012). Assessing riparian zone impacts on water and sediment movement: A new approach. Netherlands Journal of Geosciences, 91(1–2), 245–255. https://doi.org/10.1017/S0016774600001633

    Article  Google Scholar 

  • Kitamura, A. E., Carvalho, M. P., & Lima, C. F. R. (2007). Relação entre a variabilidade das frações granulométricas e a produtividade de feijoeiro sob plantio direto (Relationship between the spatial variability of particle-size fractions of soil and common bean yield under no-tillage). Revista Brasileira De Ciência Do Solo., 31, 361–369. https://doi.org/10.1590/S0100-06832007000200018

    Article  CAS  Google Scholar 

  • Kravchenko, A., & Bullock, D. G. (1999). A comparative study of interpolation methods for mapping soil properties. Agronomy Journal., 91(3), 393–400. https://doi.org/10.2134/agronj1999.00021962009100030007x

    Article  Google Scholar 

  • Lambe, T. W., & Whitman, R. V. (1969). Soil mechanics. New York, USA: Wiley.

    Google Scholar 

  • Legates, D. R., & McCabe, G. J. (1999). Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation. Water Resources Research., 35(1), 233–241.

    Article  Google Scholar 

  • Mills, C. F., & Bathurst, J. C. (2015). Spatial variability of suspended sediment yield in a gravel-bed river across four orders of magnitude of catchment area. CATENA, 133, 14–24. https://doi.org/10.1016/j.catena.2015.04.008

    Article  Google Scholar 

  • Naiman, R. J., Décamps, H., Mcclain, M. E., & Likens, G. E. (2005). Disturbance and agents of change. In R. J. Naiman, H. Décamps, & M. E. Mcclain (Eds.), Riparia: Ecology, conservation, and management of streamside communities (pp. 19–48). Cambridge, MA, USA: Elsevier Academic Press.

    Chapter  Google Scholar 

  • Neves, H. H., Mata, M. G. F., Guerra, J. G. M., Carvalho, D. F., Wendroth, O. T., & Ceddia, M. B. (2017). Spatial and temporal patterns of soil water content in an agroecological production system. Scientia Agricola, 74(4), 83–392. https://doi.org/10.1590/1678-992x-2016-0213

    Article  Google Scholar 

  • O’Sullivan, D., & Unwin, D. (2003). Geographic information analysis. New York, USA: Wiley.

    Google Scholar 

  • Ortigara, C., Koppe, E., Luz, F. B., Bertollo, A. M., Kaiser, D. R., & Silva, V. R. (2014). Uso do solo e propriedades físico-mecânicas de Latossolo Vermelho (Soil use and physical-mechanical properties of a Red Oxisol). Revista Brasileira de Ciência do Solo, 38(2), 619–626. https://doi.org/10.1590/S0100-06832014000200026

    Article  Google Scholar 

  • Özvan, A., Özvan, E. E., Akkaya, İ, Akin, M., & Akin, M. K. (2019). A study of the relationship between the pressuremeter modulus and the preconsolidation pressure around a thrust fault. Environmental Earth Sciences, 78, 596. https://doi.org/10.1007/s12665-019-8597-1

    Article  Google Scholar 

  • Pereira, A. H. F., Vitorino, A. C. T., Prado, E. A. F., Bergamin, A. C., Mauad, M., & Arantes, H. P. (2015). Least limiting water range and load bearing capacity of soil under types of tractor-trailers for mechanical harvesting of green sugarcane. Revista Brasileira De Ciência Do Solo., 39(6), 1603–1610. https://doi.org/10.1590/01000683rbcs20140561

    Article  CAS  Google Scholar 

  • Reynolds, W. D., Drury, C. F., Yang, X. M., Fox, C. A., Tann, C. S., & Zhang, T. Q. (2007). Land management effects on the near-surface physical quality of a clay loam soil. Soil and Tillage Research, 96(1–2), 316–330. https://doi.org/10.1016/j.still.2007.07.003

    Article  Google Scholar 

  • Robinson, T. P., & Metternicht, G. (2003). A comparison of inverse distance weighting and ordinary kriging for characterizing within-paddock spatial variability of soil properties in Western Australia. Cartography., 32(1), 11–24. https://doi.org/10.1080/00690805.2003.9714231

    Article  Google Scholar 

  • Sajid, A. H., Rudra, R. P., & Parkin, G. (2013). Systematic evaluation of Kriging and inverse distance weighting methods for spatial analysis of soil bulk density. Canadian Biosystem Engineering, 55(1), 1–13.

    Google Scholar 

  • Santoso, P. B., Yanto, A., & Suryani, R. (2018). Inverse distance weighting interpolated soil properties and their related landslide occurrences. MATEC Web of Conferences., 195(2018), 03013. https://doi.org/10.1051/matecconf/201819503013

    Article  Google Scholar 

  • Silva, R. B., Lanças, K. P., & Masquetto, B. J. (2015). Desenvolvimento, automação e desempenho de um consolidômetro com interface homem-máquina (Development, automation and performance of a consolidometer with human-machine interface). Revista Brasileira De Ciência Do Solo., 39(2), 416–472. https://doi.org/10.1590/01000683rbcs20140435

    Article  Google Scholar 

  • Souza, A. L. T., Fonseca, D. G., Libório, R. A., & Tanaka, M. O. (2013). Influence of riparian vegetation and forest structure on the water quality of rural loworder streams in SE Brazil. Forest Ecology and Management, 298, 12–18. https://doi.org/10.1016/j.foreco.2013.02.022

    Article  Google Scholar 

  • Teixeira, P. C., Donagemma, G. K., Fontana, A., Teixeira & W. G. (2017). Manual de Métodos de Análise de Solos (Soil Science Analysis Methods). 3ª ed. Brasília, GO, Brazil: Embrapa.

  • Vos, B. D., Meirvenne, M. V., Quataert, P., Deckers, J., & Muys, B. (2005). Predictive quality of pedotransfer functions for estimating bulk density of forest soils. Soil Science Society of America Journal., 69(2), 500–510. https://doi.org/10.2136/sssaj2005.0500

    Article  Google Scholar 

  • Watson, D. F. (1992). Contouring: A guide to the analysis and display of spatial data. Oxford, UK: Pergamon.

    Google Scholar 

  • Weber, D. D., & Englund, E. J. (1992). Evaluation and comparison of spatial interpolators. Mathematical Geology., 24, 381–391.

    Article  Google Scholar 

  • Weber, D. D., & Englund, E. J. (1994). Evaluation and comparison of spatial interpolators II. Mathematical Geology, 26, 589–603.

    Article  Google Scholar 

  • Webster, R., & Oliver, M. A. (1992). Sample adequately to estimate variograms of soil properties. Journal of Soil Science., 43, 177–192. https://doi.org/10.1111/j.1365-2389.1992.tb00128

    Article  Google Scholar 

  • Webster, R., & Oliver, M. A. (2007). Geostatistics for environmental scientists. Chichester, UK: Wiley. https://doi.org/10.1002/9780470517277

    Book  Google Scholar 

Download references

Acknowledgements

We would like to thank the landholder, Roberto Rosette, who kindly provided access to his property, which was the subject of this research, as well as the research office at the State University of Campinas (UNICAMP) for providing language help.

Funding

We would like to thank the State Water Resources Fund (FEHIDRO) for financial support (Grant Number 263/2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reginaldo Barboza da Silva.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, R.B., Iori, P., Tavares, R.L.M. et al. Do water dynamics and land use in riparian areas change the spatial pattern of physical–mechanical properties of a Cambisol?. Precision Agric 23, 984–1007 (2022). https://doi.org/10.1007/s11119-021-09871-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-021-09871-2

Keywords

Navigation