Skip to main content
Log in

Effects of spatial, temporal, and spectral resolutions on the estimation of wheat and barley leaf area index using multi- and hyper-spectral data (case study: Karaj, Iran)

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

Leaf area index (LAI) is a key parameter for the calculation of crop biophysical and biochemical processes. Therefore, the accurate estimates of LAI has been always of great importance for agricultural researchers. Remote sensing has shown enormous potential in LAI estimation, however, more evaluations are necessary on choosing the best type of data. In this study, the spatial, temporal, and spectral resolutions of different remotely sensed data (Landsat 8, Sentinel-2, MODIS, and also field hyperspectral data) were evaluated for LAI estimation of wheat and barley. First, the 30-m Landsat 8, 10-m Sentinel-2, 250-m MODIS, and field-based point data were taken into account for assessing the goodness of the relationship between field LAI (collected using LAI-2200c) and Vegetation Indices (VIs) to investigate the effect of a difference in spatial resolution. Afterward, to assess the temporal resolution effects, the Sentinel-2 images were resampled to 30 m and were combined with Landsat 8 data. Also, hyperspectral VIs (HNDVI, HDVI, and HSR) were calculated using field data to evaluate the effects of spectral resolution. Results showed that the difference in spatial and temporal resolutions of the data did not have any considerable effect on improving the LAI-VI relationship. Nevertheless, there were some particular portions of the spectrum which had R2 of more than 0.8 which was a great improvement compared to multispectral data with R2 between 0.6 and 0.69. The best HNDVI and HSR were calculated from the 10-nm bands centered at 1 115 nm and 1 135 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Aboelghar, M., Arafat, S., Saleh, A., Naeem, S., Shirbeny, M., & Belal, A. (2010). Retrieving leaf area index from SPOT4 satellite data. The Egyptian Journal of Remote Sensing and Space Science, 13(2), 121–127.

    Google Scholar 

  • ASD Inc. (2008). FieldSpec® 3 User Manual.

  • Allen, R. G., Tasumi, M., Morse, A., Trezza, R., Wright, J. L., Bastiaanssen, W., et al. (2007). Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)—Applications. Journal of Irrigation and Drainage Engineering, 133(4), 395–406.

    Google Scholar 

  • Barsi, J. A., Markham, B. L., & Pedelty, J. A. (2011). The operational land imager: Spectral response and spectral uniformity. Earth Observing Systems, 8153, 81530G.

    Google Scholar 

  • Barsi, J. A., Lee, K., Kvaran, G., Markham, B. L., & Pedelty, J. A. (2014). The spectral response of the Landsat-8 operational land imager. Remote Sensing, 6(10), 10232–10251.

    Google Scholar 

  • Bastiaanssen, W. G., Menenti, M., Feddes, R. A., & Holtslag, A. A. M. (1998). A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation. Journal of hydrology, 212, 198–212.

    Google Scholar 

  • Chandrasekar, K., Sesha Sai, M. V. R., Roy, P. S., & Dwevedi, R. S. (2010). Land Surface Water Index (LSWI) response to rainfall and NDVI using the MODIS Vegetation Index product. International Journal of Remote Sensing, 31(15), 3987–4005.

    Google Scholar 

  • Chen, D., Huang, J., & Jackson, T. J. (2005). Vegetation water content estimation for corn and soybeans using spectral indices derived from MODIS near-and short-wave infrared bands. Remote Sensing of Environment, 98(2–3), 225–236.

    Google Scholar 

  • Chen, Y., Zhang, Z., & Tao, F. (2018). Improving regional winter wheat yield estimation through assimilation of phenology and leaf area index from remote sensing data. European Journal of Agronomy, 101, 163–173.

    Google Scholar 

  • Cheng, Z., Meng, J., Shang, J., Liu, J., Qiao, Y., Qian, B., et al. (2018). Improving soil available nutrient estimation by integrating modified WOFOST model and time-series earth observations. IEEE Transactions on Geoscience and Remote Sensing, 57(5), 2896–2908.

    Google Scholar 

  • Clevers, J. G. P. W. (1988). The derivation of a simplified reflectance model for the estimation of leaf area index. Remote Sensing of Environment, 25(1), 53–69.

    Google Scholar 

  • Clevers, J. G., & Gitelson, A. A. (2013). Remote estimation of crop and grass chlorophyll and nitrogen content using red-edge bands on Sentinel-2 and-3. International Journal of Applied Earth Observation and Geoinformation, 23, 344–351.

    Google Scholar 

  • Darvishzadeh, R., Skidmore, A., Schlerf, M., Atzberger, C., Corsi, F., & Cho, M. (2008). LAI and chlorophyll estimation for a heterogeneous grassland using hyperspectral measurements. ISPRS Journal of Photogrammetry and Remote Sensing, 63(4), 409–426.

    Google Scholar 

  • Delegido, J., Verrelst, J., Alonso, L., & Moreno, J. (2011). Evaluation of sentinel-2 red-edge bands for empirical estimation of green LAI and chlorophyll content. Sensors, 11(7), 7063–7081.

    PubMed  Google Scholar 

  • Dong, T., Liu, J., Shang, J., Qian, B., Ma, B., Kovacs, J. M., et al. (2019). Assessment of red-edge vegetation indices for crop leaf area index estimation. Remote Sensing of Environment, 222, 133–143.

    Google Scholar 

  • Drusch, M., Del Bello, U., Carlier, S., Colin, O., Fernandez, V., Gascon, F., et al. (2012). Sentinel-2: ESA's optical high-resolution mission for GMES operational services. Remote Sensing of Environment, 120, 25–36.

    Google Scholar 

  • Gao, B. C. (1996). NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment, 58(3), 257–266.

    Google Scholar 

  • Ghosh, P., Mandal, D., Bhattacharya, A., Nanda, M. K., & Bera, S. (2018). Assessing crop monitoring potential of Sentinel-2 in a spatio-temporal scale. ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 425, 227–231.

    Google Scholar 

  • Gitelson, A. A., Viña, A., Arkebauer, T. J., Rundquist, D. C., Keydan, G., & Leavitt, B. (2003). Remote estimation of leaf area index and green leaf biomass in maize canopies. Geophysical Research Letters, 30(5), 1248.

    Google Scholar 

  • Gray, J., & Song, C. (2012). Mapping leaf area index using spatial, spectral, and temporal information from multiple sensors. Remote Sensing of Environment, 119, 173–183.

    Google Scholar 

  • Günlü, A., Keleş, S., Ercanlı, İ., & Şenyurt, M. (2017). Estimation of leaf area index using WorldView-2 and Aster satellite image: a case study from Turkey. Environmental Monitoring and Assessment, 189(11), 538.

    PubMed  Google Scholar 

  • Huang, C. L., Li, X., Wang, J. M., & Gu, J. (2008). Assimilation of remote sensing data products into common land model for evapotranspiration forecasting. In Proceedings of the 8th International Symposium on Spatial Accuracy Assessment in Natural Resources and Environmental Sciences, Shanghai, China (pp. 25–27).

  • Huang, J., Tian, L., Liang, S., Ma, H., Becker-Reshef, I., Huang, Y., et al. (2015). Improving winter wheat yield estimation by assimilation of the leaf area index from Landsat TM and MODIS data into the WOFOST model. Agricultural and Forest Meteorology, 204, 106–121.

    Google Scholar 

  • Huete, A. R. (1988). A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 25(3), 295–309.

    Google Scholar 

  • Hunt, E. R., Jr., & Rock, B. N. (1989). Detection of changes in leaf water content using near-and middle-infrared reflectances. Remote Sensing of Environment, 30(1), 43–54.

    Google Scholar 

  • Jégo, G., Pattey, E., & Liu, J. (2012). Using Leaf Area Index, retrieved from optical imagery, in the STICS crop model for predicting yield and biomass of field crops. Field Crops Research, 131, 63–74.

    Google Scholar 

  • Jordan, C. F. (1969). Derivation of leaf-area index from quality of light on the forest floor. Ecology, 50(4), 663–666.

    Google Scholar 

  • Kaewplang, S., & Vaiphasa, C. (2014). An evaluation of EO-1 hyperion data for estimating leaf area index of rubber plantations. International Journal of Geoinformatics, 10(3), 13–21.

    Google Scholar 

  • Liu, H. Q., & Huete, A. (1995). A feedback based modification of the NDVI to minimize canopy background and atmospheric noise. IEEE Transactions on Geoscience and Remote Sensing, 33(2), 457–465.

    Google Scholar 

  • Ma, R., Zhang, L., Tian, X., Zhang, J., Yuan, W., Zheng, Y., et al. (2017). Assimilation of remotely-sensed leaf area index into a dynamic vegetation model for gross primary productivity estimation. Remote Sensing, 9(3), 188.

    Google Scholar 

  • Meyer, L. H., Heurich, M., Beudert, B., Premier, J., & Pflugmacher, D. (2019). Comparison of Landsat-8 and Sentinel-2 data for estimation of leaf area index in temperate forests. Remote Sensing, 11(10), 1160.

    Google Scholar 

  • McFeeters, S. K. (1996). The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17(7), 1425–1432.

    Google Scholar 

  • Mokhtari, A., Noory, H., & Vazifedoust, M. (2018a). Improving crop yield estimation by assimilating LAI and inputting satellite-based surface incoming solar radiation into SWAP model. Agricultural and Forest Meteorology, 250, 159–170.

    Google Scholar 

  • Mokhtari, A., Noory, H., Vazifedoust, M., & Bahrami, M. (2018b). Estimating net irrigation requirement of winter wheat using model-and satellite-based single and basal crop coefficients. Agricultural Water Management, 208, 95–106.

    Google Scholar 

  • Mokhtari, A., Noory, H., Pourshakouri, F., Haghighatmehr, P., Afrasiabian, Y., Razavi, M., et al. (2019). Calculating potential evapotranspiration and single crop coefficient based on energy balance equation using Landsat 8 and Sentinel-2. ISPRS Journal of Photogrammetry and Remote Sensing, 154, 231–245.

    Google Scholar 

  • Netzer, Y., Yao, C., Shenker, M., Bravdo, B. A., & Schwartz, A. (2009). Water use and the development of seasonal crop coefficients for Superior Seedless grapevines trained to an open-gable trellis system. Irrigation Science, 27(2), 109–120.

    Google Scholar 

  • Nguy-Robertson, A. L., Peng, Y., Gitelson, A. A., Arkebauer, T. J., Pimstein, A., Herrmann, I., et al. (2014). Estimating green LAI in four crops: Potential of determining optimal spectral bands for a universal algorithm. Agricultural and Forest Meteorology, 192, 140–148.

    Google Scholar 

  • Nguy-Robertson, A. L., & Gitelson, A. A. (2015). Algorithms for estimating green leaf area index in C3 and C4 crops for MODIS, Landsat TM/ETM+, MERIS, Sentinel MSI/OLCI, and Venµs sensors. Remote Sensing Letters, 6(5), 360–369.

    Google Scholar 

  • Pasqualotto, N., Delegido, J., Van Wittenberghe, S., Rinaldi, M., & Moreno, J. (2019). Multi-crop green LAI estimation with a new simple Sentinel-2 LAI Index (SeLI). Sensors, 19(4), 904.

    Google Scholar 

  • Peng, D., Jiang, Z., Huete, A. R., Ponce-Campos, G. E., Nguyen, U., & Luvall, J. C. (2013). Response of spectral reflectances and vegetation indices on varying juniper cone densities. Remote Sensing, 5(10), 5330–5345.

    Google Scholar 

  • Pu, R., & Gong, P. (2004). Wavelet transform applied to EO-1 hyperspectral data for forest LAI and crown closure mapping. Remote Sensing of Environment, 91(2), 212–224.

    Google Scholar 

  • Ramírez-Cuesta, J. M., Allen, R. G., Zarco-Tejada, P. J., Kilic, A., Santos, C., & Lorite, I. J. (2019). Impact of the spatial resolution on the energy balance components on an open-canopy olive orchard. International Journal of Applied Earth Observation and Geoinformation, 74, 88–102.

    Google Scholar 

  • Ramos, T., Simionesei, L., Oliveira, A., Darouich, H., & Neves, R. (2018). Assessing the impact of LAI data assimilation on simulations of the soil water balance and maize development using MOHID-Land. Water, 10(10), 1367.

    Google Scholar 

  • Rouse Jr, J., Haas, R. H., Schell, J. A., & Deering, D.W. (1974). Monitoring vegetation systems in the Great Plains with ERTS.

  • Sibanda, M., Mutanga, O., Dube, T., Vundla, T., & Mafongoya, P. (2019). Estimating LAI and mapping canopy storage capacity for hydrological applications in wattle infested ecosystems using Sentinel-2 MSI derived red edge bands. GIScience & Remote Sensing, 56(1), 68–86.

    Google Scholar 

  • Singh, D., & Singh, S. (2016). April. Leaf area index retrieval using Hyperion EO-1 data-based vegetation indices in Himalayan forest system. In Multispectral, Hyperspectral, and Ultraspectral Remote Sensing Technology, Techniques and Applications VI (Vol. 9880, p. 98800U). International Society for Optics and Photonics.

  • Sripada, R. P. (2005). Determining in-season nitrogen requirements for corn using aerial color-infrared photography. Ph.D. dissertation, North Carolina State University.

  • Sprintsin, M., Karnieli, A., Berliner, P., Rotenberg, E., Yakir, D., & Cohen, S. (2007). The effect of spatial resolution on the accuracy of leaf area index estimation for a forest planted in the desert transition zone. Remote Sensing of Environment, 109(4), 416–428.

    Google Scholar 

  • Thenkabail, P. S., Smith, R. B., & De Pauw, E. (2000). Hyperspectral vegetation indices and their relationships with agricultural crop characteristics. Remote Sensing of Environment, 71(2), 158–182.

    Google Scholar 

  • Trezza, R., Allen, R. G., Kilic, A., Ratcliffe, I., & Tasumi, M. (2018). Influence of landsat revisit frequency on time-integration of evapotranspiration for agricultural water management. Evapotranspiration. Reijika: IntechOpen.

    Google Scholar 

  • Tucker, C. J. (1978). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8, 127–150.

    Google Scholar 

  • Vanino, S., Nino, P., De Michele, C., Bolognesi, S. F., D'Urso, G., Di Bene, C., et al. (2018). Capability of Sentinel-2 data for estimating maximum evapotranspiration and irrigation requirements for tomato crop in Central Italy. Remote Sensing of Environment, 215, 452–470.

    Google Scholar 

  • Viña, A., Gitelson, A. A., Nguy-Robertson, A. L., & Peng, Y. (2011). Comparison of different vegetation indices for the remote assessment of green leaf area index of crops. Remote Sensing of Environment, 115(12), 3468–3478.

    Google Scholar 

  • Waldner, F., Horan, H., Chen, Y., & Hochman, Z. (2019). High temporal resolution of leaf area data improves empirical estimation of grain yield. Scientific Reports, 9(1), 1–14.

    CAS  Google Scholar 

  • Wang, L., Chang, Q., Yang, J., Zhang, X., & Li, F. (2018). Estimation of paddy rice leaf area index using machine learning methods based on hyperspectral data from multi-year experiments. PLoS ONE, 13(12), e0207624.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamideh Noory.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afrasiabian, Y., Noory, H., Mokhtari, A. et al. Effects of spatial, temporal, and spectral resolutions on the estimation of wheat and barley leaf area index using multi- and hyper-spectral data (case study: Karaj, Iran). Precision Agric 22, 660–688 (2021). https://doi.org/10.1007/s11119-020-09749-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-020-09749-9

Keywords

Navigation