Skip to main content
Log in

How to measure and report within-field variability: a review of common indicators and their sensitivity

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

In agricultural fields, observations near in space share more similarities than observations far apart. This phenomenon of closely related points, the so-called spatial autocorrelation or in that case, the within-field spatial variability, is well-recognized and needs to be characterized to consider site-specific management. Quantifying spatial dependency is fundamental for understanding the underlying factors affecting field productivity. An examination of multiple scientific papers was carried out to assess why and how practitioners were evaluating the spatial variability across their fields. An analysis of the existing descriptors of within-field variability was performed to identify the most relevant indicators to use based on (i) the case studies that practitioners employed, (ii) the different nature of data to which users were confronted, and (iii) the complexity and ease of access to information in support of these available approaches. Finally, this paper provides users with a comprehensive decision tree that should help them select an appropriate index of spatial variability for their work. Results also highlight the needs for further investigation, especially regarding the implementation of more general and standardized approaches that will enable cross-study comparison.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Acevedo-Opazo, C., Tisseyre, B., Guillaume, S., & Ojeda, H. (2008). The potential of high spatial resolution information to define within-vineyard zones related to vine water status. Precision Agriculture, 9(5), 285–302.

    Article  Google Scholar 

  • Baluja, J., Diago, M., Goovaerts, P., & Tardaguila, J. (2012). Assessment of the spatial variability of anthocyanins in grapes using a fluorescence sensor: Relationships with vine vigour and yield. Precision Agriculture, 13, 457–472.

    Article  Google Scholar 

  • Basso, B., Bertocco, M., Sartori, L., & Martin, E. C. (2007). Analyzing the effects of climate variability on spatial pattern of yield in a maize–wheat–soybean rotation. European Journal of Agronomy, 26, 82–91.

    Article  Google Scholar 

  • Bivand, R. S., Pebesma, E. J., & Gomez-Rubio, V. (2013). Applied Spatial Data Analysis with R (2nd ed.). New York, USA: Springer.

    Book  Google Scholar 

  • Bramley, R. G. V. (2005). Understanding variability in winegrape production systems 2. Within vineyard variation in quality over several vintages. Australian Journal of Grape and Wine Research, 11, 33–45.

    Article  Google Scholar 

  • Cambardella, C. A., & Karlen, D. L. (1999). Spatial analysis of soil fertility parameters. Precision Agriculture, 1(1), 5–14.

    Article  Google Scholar 

  • Cambardella, C. A., Moorman, T. B., Novak, J. M., Parkin, T. B., Karlen, D. L., Turko, R. F., et al. (1994). Field-scale variability of soil properties in central Iowa soils. Soil Science Society of America Journal, 58, 1501–1511.

    Article  Google Scholar 

  • Cao, Q., Cui, Z., Chen, X., Khosla, R., Dao, T. H., & Miao, Y. (2012). Quantifying spatial variability of indigenous nitrogen management in small scale farming. Precision Agriculture, 13, 45–61.

    Article  Google Scholar 

  • Cerovic, Z.G., Goutouly, J.P., Hilbert, G., Destrac-Irvine, A., Martinon, V., & Moise, N. (2009). Mapping winegrape quality attributes using portable fluorescence-based sensors. In S. Best (Ed.), Proceedings of the 8th fruit, nut and vegetable production engineering symposium, Chile (pp 301–310)

  • Davatgar, N., Neishabouri, M. R., & Sepaskhah, A. R. (2012). Delineation of site specific nutrient management zones for a paddy cultivated area based on soil fertility using fuzzy clustering. Geoderma, 173–174, 111–118.

    Article  CAS  Google Scholar 

  • de Oliveira, R. P., Whelan, B. M., McBratney, A. B., & Taylor, J. A. (2007). Yield variability as an index supporting management decisions: YIELDex. In J. Stafford (Ed.) Proceedings of the 6th European conference on precision agriculture (pp. 281–288). Wageningen, The Netherlands: Wageningen Academic Publishers.

  • Di Virgilio, N., Monti, A., & Venturi, G. (2007). Spatial variability of switchgrass (Panicum virgatum L.) yield as related to soil parameters in a small field. Field Crops Research, 101, 232–239.

    Article  Google Scholar 

  • Fairfield Smith, H. (1938). An empirical law describing heterogeneity in the yield of agricultural crops. The Journal of Agricultural Science, 28, 1–23.

    Article  Google Scholar 

  • Griepentrog, H. W., Thiessen, E., Kristensen, H. & Knudsen, L. (2007). A patch-size index to assess machinery to match soil and crop spatial variability. In J. Stafford (Ed.), Proceedings of the 6th European conference on precision agriculture (pp. 407–413). Wageningen, The Netherlands: Wageningen Academic Publishers.

  • Han, S., Hummel, J. W., Goering, C. E., & Cahn, M. D. (1994). Cell size selection for site-specific crop management. Transactions of the ASAE, 37, 19–26.

    Article  Google Scholar 

  • Iqbal, J., Thomasson, J. A., Jenkins, J. N., Owens, P. R., & Whisler, F. D. (2005). Spatial variability analysis of soil physical properties of alluvial soils. Soil Science Society of America Journal, 69, 1–14.

    Article  Google Scholar 

  • Junior, V. V., Carvalh, M. P., Dafonte, J., Freddi, O. S., Vidal Vazquez, E., et al. (2006). Spatial variability of soil water content and mechanical resistance of Brazilian ferralsol. Soil and Tillage Research, 85, 166–177.

    Article  Google Scholar 

  • Kitchen, N. R., Sudduth, K. A., & Drummond, S. T. (1999). Soil electrical conductivity as a crop productivity measure for claypan soils. Journal of Production Agriculture, 12, 607–617.

    Article  Google Scholar 

  • Kravchenko, A. N., Robertson, G. P., Thelen, K. D., & Harwood, R. R. (2005). Management, topographical, and weather effects on spatial variability of crop grain yields. Agronomy Journal, 97, 514–523.

    Article  Google Scholar 

  • Li, Y., Shi, Z., Wu, C. F., Li, H. Y., & Li, F. (2008). Determination of potential management zones from soil electrical conductivity, yield and crop data. Journal of Zhejiang University Science, 9, 68–76.

    Article  Google Scholar 

  • López-Granados, F., Jurado-Expósito, M., Alamo, S., & Garcıa-Torres, L. (2004). Leaf nutrient spatial variability and site-specific fertilization maps within olive (Olea europaea L.) orchards. European Journal of Agronomy, 21(2), 209–222.

    Article  CAS  Google Scholar 

  • López-Granados, F., Jurado-Expósito, M., Atenciano, S., García-Ferrer, A., Sánchez de la Orden, M., & García-Torres, L. (2002). Spatial variability of agricultural soil parameters in southern Spain. Plant and Soil, 246(1), 97–105.

    Article  Google Scholar 

  • Matheron, G. (1963). Principles of geostatistics. Economic Geology, 58, 1246–1266.

    Article  CAS  Google Scholar 

  • Mercer, W. B., & Hall, A. D. (1911). The experimental error of field trials. Journal of Agricultural Science, 4, 107–132.

    Article  Google Scholar 

  • Molin, J. P., & Faulin, G. D. C. (2002). Spatial and temporal variability of soil electrical conductivity related to soil moisture. Scientia Agricola, 70, 1–5.

    Article  Google Scholar 

  • Molin, J. P., & Menegatti, L. A. A. (2002). Methodology for identification, characterization and removal of errors on yield maps. Paper No 021168, St Joseph, MI, USA: ASAE.

  • Monsó, A., Arnó, J., & Martínez-Casasnovas, J. A. (2013). A simplified index to assess the opportunity for selective wine grape harvesting from vigour maps. In J. Stafford (Ed.), Proceedings of the 9th European conference on precision agriculture (pp. 625–632). Wageningen, The Netherlands: Wageningen Academic Publishers.

  • Moral, F. J., Terrón, J. M., & Da Silva, J. M. (2010). Delineation of management zones using mobile measurements of soil apparent electrical conductivity and multivariate geostatistical techniques. Soil and Tillage Research, 106(2), 335–343.

    Article  Google Scholar 

  • Oliver, M. A. (2010). Geostatistical applications for precision agriculture. London, UK: Springer.

    Book  Google Scholar 

  • Özgöz, E., Günay, H., Önen, H., Bayram, M., & Acir, N. (2012). Effect of management on spatial and temporal distribution of soil physical properties. Journal of Agricultural Sciences, 18, 77–91.

    Google Scholar 

  • Paoli, J. N., Tisseyre, B., Strauss, O., & McBratney, A. B. (2010). A technical opportunity index based on a fuzzy footprint of the machine for site-specific management: Application to viticulture. Precision Agriculture, 11(4), 379–396.

    Article  Google Scholar 

  • Pedroso, M., Taylor, J., Tisseyre, B., Charnomordic, B., & Guillaume, S. (2010). A segmentation algorithm for the delineation of management zones. Computer and Electronics in Agriculture, 70, 199–208.

    Article  Google Scholar 

  • Ping, J. L., & Dobermann, A. (2005). Processing of yield map data. Precision Agriculture, 6(2), 193–212.

    Article  Google Scholar 

  • Pringle, M. J., McBratney, A. B., Whelan, B. M., & Taylor, J. A. (2003). A preliminary approach to assessing the opportunity for site-specific crop management in a field, using yield sensor data. Agricultural Systems, 76, 273–292.

    Article  Google Scholar 

  • Rab, M. A., Fisher, P. D., Armstrong, R. D., Abuzar, M., Robinson, N. J., & Chandra, S. (2009). Advances in precision agriculture in south-eastern Australia. IV. Spatial variability in plant-available water capacity of soil and its relationship with yield in site-specific management zones. Crop and Pasture Science, 60, 885–900.

    Article  Google Scholar 

  • Reza, S. K., Sarkar, D., Baruah, U., & Das, T. H. (2010). Evaluation and comparison of ordinary kriging and inverse distance weighting methods for prediction of spatial variability of some chemical parameters of Dhalai district. Tripura. Agropedology, 2(1), 38–48.

    Google Scholar 

  • Robertson, G. P., Klingensmith, K. M., Klug, M. J., Paul, E. A., Crum, J. R., & Ellis, B. G. (1997). Soil resources, microbial activity, and primary production across an agricultural ecosystem. Ecological Applications, 7, 158–170.

    Article  Google Scholar 

  • Rodeghiero, M., & Cescatti, A. (2008). Spatial variability and optimal sampling strategy of soil respiration. Forest Ecology and Management, 255(1), 106–112.

    Article  Google Scholar 

  • Roudier, P., Tisseyre, B., Poilvé, H., & Roger, J. (2008). Management zone delineation using a modified watershed algorithm. Precision Agriculture, 9, 233–250.

    Article  Google Scholar 

  • Roudier, P., Tisseyre, B., Poilve, H., & Roger, J. M. R. (2011). A technical opportunity index adapted to zone-specific management Management zone delineation using a modified watershed algorithm. Precision Agriculture, 12, 130–145.

    Article  Google Scholar 

  • Röver, M., & Kaiser, E. A. (1999). Spatial heterogeneity within the plough layer: Low and moderate variability of soil properties. Soil Biology & Biochemistry, 31(2), 175–187.

    Article  Google Scholar 

  • Sadras, V., & Bongiovanni, R. (2004). Use of Lorenz curves and Gini coefficients to assess yield inequality within paddocks. Field Crops Research, 90, 303–310.

    Article  Google Scholar 

  • Santesteban, L. G., Guillaume, S., Royo, J. B., & Tisseyre, B. (2013). Are precision agriculture tools and methods relevant at the wholevineyard scale? Precision Agriculture, 14, 2–17.

    Article  Google Scholar 

  • Shahandeh, H., Wright, A. L., Hons, F. M., & Lascano, R. J. (2005). Spatial and temporal variation of soil nitrogen parameters related to soil texture and corn yield. Agronomy Journal, 97, 772–782.

    Article  Google Scholar 

  • Simbahan, G. C., Dobermann, A., & Ping, J. L. (2004). Screening yield monitor data improves grain yield maps. Agronomy Journal, 96, 1091–1102.

    Article  Google Scholar 

  • Song, X., Wang, J., Huang, W., Liu, L., Yan, G., & Pu, R. (2009). The delineation of agricultural management zones with high resolution remotely sensed data. Precision Agriculture, 10, 471–487.

    Article  Google Scholar 

  • Stenger, R., Priesack, E., & Beese, F. (2002). Spatial variation of nitrate–N and related soil properties at the plot-scale. Geoderma, 105(3), 259–275.

    Article  CAS  Google Scholar 

  • Sudduth, K. A., & Drummond, S. T. (2007). Yield Editor: Software for removing errors from crop yield maps. Agronomy Journal, 99, 1471–1482.

    Article  Google Scholar 

  • Sudduth, K. A., Drummond, S. T., & Kitchen, N. R. (2001). Accuracy issues in electromagnetic induction sensing of soil electrical conductivity for precision agriculture. Computers and Electronics in Agriculture, 31, 239–264.

    Article  Google Scholar 

  • Sun, B., Zhou, S., & Zhao, Q. (2003). Evaluation of spatial and temporal changes of soil quality based on geostatistical analysis in the hill region of subtropical China. Geoderma, 115, 85–99.

    Article  Google Scholar 

  • Sun, W., Whelan, B., McBratney, A. B., & Minasny, B. (2013). An integrated framework for software to provide yield data cleaning and estimation of an opportunity index for site-specific crop management. Precision Agriculture, 14, 376–391.

    Article  Google Scholar 

  • Taylor, J., Tisseyre, B., Bramely, R. & Reid, A. (2005). A comparison of the spatial variability of vineyard yield in European and Australian production systems. In J. Stafford (Ed.) Proceedings of the 5th European conference on precision agriculture (pp. 907–914). Wageningen, The Netherlands: Wageningen Academic Publishers

  • Taylor, J. A., Praat, J. P., & Bollen, A. F. (2007). Spatial variability of kiwifruit quality in orchards and its implications for sampling and mapping. HortScience, 42, 246–250.

    Article  Google Scholar 

  • Tisseyre, B., & McBratney, A. B. (2008). A technical opportunity index based on mathematical morphology for site-specific management: An application to viticulture. Precision Agriculture, 9, 101–113.

    Article  Google Scholar 

  • Vasu, D., Singh, S. K., Sahu, N., Tiwary, P., Chandran, P., Duraisami, V. P., et al. (2017). Assessment of spatial variability of soil properties using geospatial techniques for farm level nutrient management. Soil and Tillage Research, 169, 25–34.

    Article  Google Scholar 

  • Whelan, B. M., & McBratney, A. B. (2000). The “null hypothesis” of precision agriculture management. Precision Agriculture, 2(3), 265–279.

    Article  Google Scholar 

  • Wu, J., Norvell, W. A., Hopkins, D. G., & Welch, R. M. (2002). Spatial variability of grain cadmium and soil characteristics in a durum wheat field. Soil Science Society of America Journal, 66(1), 268–275.

    Article  CAS  Google Scholar 

  • Xin-Zhong, W., Guo-Shun, L., Hong-Chao, H., Zhen-Hai, W., Qing-Hua, L., Xu-Feng, L., et al. (2009). Determination of management zones for a tobacco field based on soil fertility. Computers and Electronics in Agriculture, 65(2), 168–175.

    Article  Google Scholar 

  • Zadeh, L. (1965). Fuzzy sets. Information and Control, 8, 338–353.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corentin Leroux.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leroux, C., Tisseyre, B. How to measure and report within-field variability: a review of common indicators and their sensitivity. Precision Agric 20, 562–590 (2019). https://doi.org/10.1007/s11119-018-9598-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-018-9598-x

Keywords

Navigation