Skip to main content
Log in

Combined use of in situ hyperspectral vegetation indices for estimating pasture biomass at peak productive period for harvest decision

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

Since the typical destructive methods for measuring aboveground biomass (AGB) have many limitations, a variety of non-destructive techniques have been developed. In this paper, the potential of ground-based hyperspectral remote-sensed data for non-destructive assessment of semi-arid pasture AGB at the peak productive period was investigated. The reflectance spectrometric and AGB data were sampled at the end of the growing season (almost peak biomass) over two locations at pastures in the southern Horqin sandy land, eastern Inner Mongolia, China. All combinations (two-band and three-band) of narrow bands in the forms of simple ratio vegetation index (SRVI), normalized difference vegetation index (NDVI), soil adjusted vegetation index (SAVI) and enhanced vegetation index (EVI) were used in a linear regression analysis against AGB. The predictive performance of the stepwise multiple linear regression (SMLR) using 4 best VIs as input variables was compared with the performance of multivariate partial least squares regression (PLSR) using all reflectance bands as input variables to estimate AGB. It was observed that the relationship between AGB and single band spectral reflectance was low, while the estimation performance of the best VIs based on all available wavebands was improved considerably. In addition, the best VIs based on all available wavebands had considerably better fitting performance than those based on traditionally used wavebands for estimating AGB. In comparison to PLSR using the full individual reflectance as input variables, SMLR using the best VIs as input variables performed much better, with the maximum decrease in RMSECV of 37% and the relative mean absolute errors always below 12.5%. The study demonstrated the high potential to estimate pasture AGB, which is a proxy for pasture forage yield, at the peak productive period using a hyperspectral technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Almas, L. K., Price, J. A., Workneh, F., & Rush, C. M. (2016). Quantifying economic losses associated with levels of wheat streak mosaic incidence and severity in the Texas High Plains. Crop Protection, 88, 155–160. https://doi.org/10.1016/j.cropro.2016.06.012.

    Article  Google Scholar 

  • Atzberger, C., Guérif, M., Baret, F., & Werner, W. (2010). Comparative analysis of three chemometric techniques for the spectroradiometric assessment of canopy chlorophyll content in winter wheat. Computers and Electronics in Agriculture, 73(2), 165–173.

    Article  Google Scholar 

  • Barrachina, M., Cristóbal, J., & Tulla, A. F. (2015). Estimating above-ground biomass on mountain meadows and pastures through remote sensing. International Journal of Applied Earth Observation and Geoinformation, 38, 184–192.

    Article  Google Scholar 

  • Boegh, E., Soegaard, H., Broge, N., Hasager, C. B., Jensen, N. O., Schelde, K., et al. (2002). Airborne multispectral data for quantifying leaf area index, nitrogen concentration, and photosynthetic efficiency in agriculture. Remote Sensing of Environment, 81(2–3), 179–193.

    Article  Google Scholar 

  • Boschetti, M., Bocchi, S., & Brivio, P. A. (2007). Assessment of pasture production in the Italian Alps using spectrometric and remote sensing information. Agriculture, Ecosystems & Environment, 118(1–4), 267–272.

    Article  Google Scholar 

  • Broge, N. H., & Leblanc, E. (2001). Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sensing of Environment, 76(2), 156–172.

    Article  Google Scholar 

  • Bruno, T. J., & Svoronos, P. D. N. (2006). CRC handbook of fundamental spectroscopic correlation charts. Boca Raton: FL, USA: CRC Taylor & Francis.

    Google Scholar 

  • Cho, M. A., Skidmore, A., Corsi, F., van Wieren, S. E., & Sobhan, I. (2007). Estimation of green grass/herb biomass from airborne hyperspectral imagery using spectral indices and partial least squares regression. International Journal of Applied Earth Observation and Geoinformation, 9(4), 414–424.

    Article  Google Scholar 

  • Darvishzadeh, R., Skidmore, A., Schlerf, M., Atzberger, C., Corsi, F., & Cho, M. (2008). LAI and chlorophyll estimation for a heterogeneous grassland using hyperspectral measurements. ISPRS Journal of Photogrammetry and Remote Sensing, 63(4), 409–426.

    Article  Google Scholar 

  • Duan, L., Liu, T., Wang, X., Wang, G., Ma, L., & Luo, Y. (2011). Spatio-temporal variations in soil moisture and physicochemical properties of a typical semiarid sand-meadow-desert landscape as influenced by land use. Hydrology and Earth System Sciences, 15(6), 1865–1877.

    Article  CAS  Google Scholar 

  • Fatehi, P., Damm, A., Schweiger, A. K., Schaepman, M. E., & Kneubühler, M. (2015). Mapping alpine aboveground biomass from imaging spectrometer data: A comparison of two approaches. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(6), 3123–3139.

    Article  Google Scholar 

  • Fava, F., Colombo, R., Bocchi, S., Meroni, M., Sitzia, M., Fois, N., et al. (2009). Identification of hyperspectral vegetation indices for Mediterranean pasture characterization. International Journal of Applied Earth Observation and Geoinformation, 11(4), 233–243.

    Article  Google Scholar 

  • Fava, F., Parolo, G., Colombo, R., Gusmeroli, F., Della Marianna, G., Monteiro, A. T., et al. (2010). Fine-scale assessment of hay meadow productivity and plant diversity in the European Alps using field spectrometric data. Agriculture, Ecosystems & Environment, 137(1–2), 151–157.

    Article  Google Scholar 

  • Finger, R., Lazzarotto, P., & Calanca, P. (2010). Bio-economic assessment of climate change impacts on managed grassland production. Agricultural Systems, 103(9), 666–674.

    Article  Google Scholar 

  • Forchetti, D. A. P., & Poppi, R. J. (2017). Use of NIR hyperspectral imaging and multivariate curve resolution (MCR) for detection and quantification of adulterants in milk powder. LWT-Food Science and Technology, 73, 337–343.

    Article  CAS  Google Scholar 

  • Foster, A. J., Kakani, V. G., & Mosali, J. (2017). Estimation of bioenergy crop yield and N status by hyperspectral canopy reflectance and partial least square regression. Precision Agriculture, 18(2), 192–209.

    Article  Google Scholar 

  • Fritz, M., & Berger, P. D. (2015). Chapter 10 - Can you relate in multiple ways? Multiple linear regression and stepwise regression. Improving the User Experience Through Practical Data Analytics (pp. 239–269). Boston, USA: Morgan Kaufmann.

    Chapter  Google Scholar 

  • Gasch, C. K., Huzurbazar, S. V., & Stahl, P. D. (2015). Small-scale spatial heterogeneity of soil properties in undisturbed and reclaimed sagebrush steppe. Soil & Tillage Research, 153, 42–47.

    Article  Google Scholar 

  • Geladi, P., & Kowalski, B. R. (1986). Partial least-squares regression: a tutorial. Analytica Chimica Acta, 185, 1–17.

    Article  CAS  Google Scholar 

  • Ghassemian, H. (2016). A review of remote sensing image fusion methods. Information Fusion, 32, 75–89.

    Article  Google Scholar 

  • Gnyp, M. L., Bareth, G., Li, F., Lenz-Wiedemann, V. I. S., Koppe, W., Miao, Y., et al. (2014). Development and implementation of a multiscale biomass model using hyperspectral vegetation indices for winter wheat in the North China Plain. International Journal of Applied Earth Observation and Geoinformation, 33, 232–242.

    Article  Google Scholar 

  • Hansen, P. M., & Schjoerring, J. K. (2003). Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression. Remote Sensing of Environment, 86(4), 542–553.

    Article  Google Scholar 

  • Huete, A. R. (1988). A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 25(3), 295–309.

    Article  Google Scholar 

  • Huete, A. R., Liu, H. Q., Batchily, K., & van Leeuwen, W. (1997). A comparison of vegetation indices over a global set of TM images for EOS-MODIS. Remote Sensing of Environment, 59(3), 440–451.

    Article  Google Scholar 

  • Jiao, C., Yu, G., He, N., Ma, A., Ge, J., & Hu, Z. (2017). Spatial pattern of grassland aboveground biomass and its environmental controls in the Eurasian steppe. Journal of Geographical Sciences, 27(1), 3–22.

    Article  Google Scholar 

  • Jordan, C. F. (1969). Derivation of leaf-area index from quality of light on the forest floor. Ecology, 50(4), 663–666. https://doi.org/10.2307/1936256.

    Article  Google Scholar 

  • Kalacska, M., Lalonde, M., & Moore, T. R. (2015). Estimation of foliar chlorophyll and nitrogen content in an ombrotrophic bog from hyperspectral data: Scaling from leaf to image. Remote Sensing of Environment, 169, 270–279.

    Article  Google Scholar 

  • Li, Z., Han, G., Zhao, M., Wang, J., Wang, Z., Kemp, D. R., et al. (2015). Identifying management strategies to improve sustainability and household income for herders on the desert steppe in Inner Mongolia, China. Agricultural Systems, 132, 62–72.

    Article  Google Scholar 

  • Li, Y., Liu, Y., Wu, S., Wang, C., Xu, A., & Pan, X. (2017). Hyper-spectral estimation of wheat biomass after alleviating of soil effects on spectra by non-negative matrix factorization. European Journal of Agronomy, 84, 58–66.

    Article  Google Scholar 

  • Lu, D. S. (2006). The potential and challenge of remote sensing-based biomass estimation. International Journal of Remote Sensing, 27(7), 1297–1328. https://doi.org/10.1080/01431160500486732.

    Article  Google Scholar 

  • Luo, S., Wang, C., Xi, X., Pan, F., Qian, M., Peng, D., et al. (2017). Retrieving aboveground biomass of wetland Phragmites australis (common reed) using a combination of airborne discrete-return LiDAR and hyperspectral data. International Journal of Applied Earth Observation and Geoinformation, 58, 107–117.

    Article  Google Scholar 

  • Mahajan, G. R., Pandey, R. N., Sahoo, R. N., Gupta, V. K., Datta, S. C., & Kumar, D. (2016). Monitoring nitrogen, phosphorus and sulphur in hybrid rice (Oryza sativa L.) using hyperspectral remote sensing. Precision Agriculture, 18(5), 736–761. https://doi.org/10.1007/s11119-016-9485-2.

    Article  Google Scholar 

  • Mutanga, O., & Skidmore, A. K. (2004). Hyperspectral band depth analysis for a better estimation of grass biomass (Cenchrus ciliaris) measured under controlled laboratory conditions. International Journal of Applied Earth Observation and Geoinformation, 5(2), 87–96.

    Article  Google Scholar 

  • Nogales-Bueno, J., Baca-Bocanegra, B., Jara-Palacios, M. J., Hernandez-Hierro, J. M., & Heredia, F. J. (2017). Evaluation of the influence of white grape seed extracts as copigment sources on the anthocyanin extraction from grape skins previously classified by near infrared hyperspectral tools. Food Chemistry, 221, 1685–1690.

    Article  CAS  PubMed  Google Scholar 

  • Qiao, X. J., Jiang, J. B., Qi, X. T., Guo, H. Q., & Yuan, D. S. (2017). Utilization of spectral-spatial characteristics in shortwave infrared hyperspectral images to classify and identify fungi-contaminated peanuts. Food Chemistry, 220, 393–399.

    Article  CAS  PubMed  Google Scholar 

  • Rouse, J. W., Haas, R. H., Schell, J. A., Deering, D. W., & Harlan, J. C. (1974). Monitoring the vernal advancement of retrogradation of natural vegetation. Greenbelt, MD, USA: NASA/GSFC.

    Google Scholar 

  • Sweet, S. K., Asmus, A., Rich, M. E., Wingfield, J., Gough, L., & Boelman, N. T. (2014). NDVI as a predictor of canopy arthropod biomass in the Alaskan arctic tundra. Ecological Applications, 25(3), 779–790.

    Article  Google Scholar 

  • Tamme, R., Gazol, A., Price, J. N., Hiiesalu, I., & Pärtel, M. (2016). Co-occurring grassland species vary in their responses to fine-scale soil heterogeneity. Journal of Vegetation Science, 27(5), 1012–1022. https://doi.org/10.1111/jvs.12431.

    Article  Google Scholar 

  • Thenkabail, P. S., Smith, R. B., & De Pauw, E. (2000). Hyperspectral vegetation indices and their relationships with agricultural crop characteristics. Remote Sensing of Environment, 71(2), 158–182.

    Article  Google Scholar 

  • Tong, X., Liu, T., Singh, V. P., Duan, L., & Long, D. (2016). Development of in situ experiments for evaluation of anisotropic reflectance effect on spectral mixture analysis for vegetation cover. IEEE Geoscience and Remote Sensing Letters, 13(5), 636–640.

    Article  Google Scholar 

  • Yue, J., Feng, H., Yang, G., & Li, Z. (2018). A comparison of regression techniques for estimation of above-ground winter wheat biomass using near-surface spectroscopy. Remote Sensing, 10(1), 66. https://doi.org/10.3390/rs10010066.

    Article  Google Scholar 

  • Zandler, H., Brenning, A., & Samimi, C. (2015). Potential of space-borne hyperspectral data for biomass quantification in an arid environment: advantages and limitations. Remote Sensing, 7(4), 4565–4580.

    Article  Google Scholar 

  • Zhao, D., Reddy, K. R., Kakani, V. G., Read, J. J., & Koti, S. (2007). Canopy reflectance in cotton for growth assessment and lint yield prediction. European Journal of Agronomy, 26(3), 335–344.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Jiaozhuan Yao and Tenghe for the help in collecting in situ data. The field and laboratory support of Xiaoyan Gao is greatly appreciated. This work was financially supported by the National Natural Science Foundation of China [Grant Nos 51620105003, 51139002, 51479086 and 51369016], the Ministry of Education Innovative Research Team [Grant Number IRT_13069], the Innovation Team in Priority Areas Accredited by the Ministry of Science and Technology [Grant Number 2015RA4013], and the Inner Mongolia Grassland Elite Innovative Research Team (2012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tingxi Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tong, X., Duan, L., Liu, T. et al. Combined use of in situ hyperspectral vegetation indices for estimating pasture biomass at peak productive period for harvest decision. Precision Agric 20, 477–495 (2019). https://doi.org/10.1007/s11119-018-9592-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-018-9592-3

Keywords

Navigation