Skip to main content
Log in

Detection of grapevine leafroll disease based on 11-index imagery and ant colony clustering algorithm

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

Grapevine leafroll disease (GLD) is a virus disease that quickly propagates through vineyards under appropriate weather conditions and can reduce grape production worldwide by nearly 60 %. Therefore, the accurate diagnosis and reliable evaluation of GLD distribution, particularly at the early stage of GLD infection, is important to prevent the spread of this disease. This study applied the ant colony clustering algorithm (ACCA) to detect GLD spectral anomalies on 4 GLD-infected vineyards according to multi-spectral imagery for precision disease management. GLD was classified into three stages: GLD1, GLD2 and GLD3 according to its infection severity. An 11-index feature vector and its stacked image were generated to enhance the spectral differences and spectral discrimination between diseased and healthy grapevines. ACCA was then designed to solve the fuzziness of the multi-spectral image for GLD-infected grapevines and successfully identify GLD from healthy grapevines. Finally, a field survey with 49 samples and pixel purity index technology were applied to validate the effectiveness, efficiency and accuracy of ACCA. Field results indicated that an early stage of the GLD infection (GLD1) could be successfully discriminated from GLD2-, GLD3- and non-infected grapevines. The classification accuracies of non-, GLD1-, GLD2- and GLD3-infected grapevines were 94.4, 75, 84.6 and 83.3 %, respectively. Hence, the method based on an 11-index image and ACCA may significantly detect GLD at an early stage from healthy grapevines for precision disease management at the field level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Almeida, R., Daane, K., Bell, V., Blaisdell, G., Cooper, M., Herrbach, E., et al. (2013). Ecology and management of grapevine leafroll disease. Frontiers in Microbiology, 4, 94. doi:10.3389/fmicb.2013.00094.

    Article  PubMed  PubMed Central  Google Scholar 

  • Apan, A., Held, A., Phinn, S., & Markley, J. (2004). Detecting sugarcane ‘orange rust’ disease using EO-1 Hyperion hyperspectral imagery. International Journal of Remote Sensing, 25, 489–498.

    Article  Google Scholar 

  • Azzag, H., Venturini, G., Oliver, A., & Guinot, C. (2007). A hierarchical ant based clustering algorithm and its use in three real world applications. European Journal of Operational Research, 179, 906–922.

    Article  Google Scholar 

  • Baluja, J., Diago, M. P., Goovaerts, P., & Tardaguila, J. (2012). Assessment of the spatial variability of anthocyanins in grapes using a fluorescence sensor: Relationships with vine vigour and yield. Precision Agriculture, 13, 457–472.

    Article  Google Scholar 

  • Bauriegel, E., Giebel, A., Geyer, M., Schmidt, U., & Herppich, W. B. (2011). Early detection of Fusarium infection in wheat using hyper-spectral imaging. Computers and Electronics in Agriculture, 75, 304–312.

    Article  Google Scholar 

  • Behmann, J., Steinrücken, J., & Plümer, L. (2014). Detection of early plant stress responses in hyperspectral images. ISPRS Journal of Photogrammetry and Remote Sensing, 93, 98–111.

    Article  Google Scholar 

  • Berdugo, C., Zito, R., Paulus, S., & Mahlein, A. K. (2014). Fusion of sensor data for the detection and differentiation of plant diseases in cucumber. Plant Pathology, 63(6), 1344–1356.

    Article  CAS  Google Scholar 

  • Bertazzon, N., Borgo, M., Vanin, S., & Angelini, E. (2010). Genetic variability and pathological properties of grapevine leafroll-associated virus 2 isolates. European Journal of Plant Pathology, 127, 185–197.

    Article  Google Scholar 

  • Bock, C. H., Poole, G. H., Parker, P. E., & Gottwald, T. R. (2010). Plant disease severity estimated visually, by digital photography and image analysis, and by hyperspectral imaging. Critical Reviews in Plant Science, 29(2), 59–107.

    Article  Google Scholar 

  • Bongiovanni, R., & Lowenberg-Deboer, J. (2004). Precision agriculture and sustainability. Precision Agriculture, 5, 359–387.

    Article  Google Scholar 

  • Bravo, C., Moushou, D., West, J., McCartney, A., & Ramon, H. (2003). Early disease detection in wheat fields using spectral reflectance. Biosystems Engineering, 84, 137–145.

    Article  Google Scholar 

  • Camargo, A., & Smith, J. S. (2009). Image pattern classification for the identification of disease causing agents in plants. Computers and Electronics in Agriculture, 66(2), 121–125.

    Article  Google Scholar 

  • Chaerle, L., Hagenbeck, D., De Bruyne, E., Valcke, R., & Van der Straeten, D. (2004). Thermal and chlorophyll-fluorescence imaging distinguish plant-pathogen interactions at an early stage. Plant Cell Physiology, 45(7), 887–896.

    Article  CAS  PubMed  Google Scholar 

  • Chen, G. Y., & Qian, S. E. (2008). Evaluation and comparison of dimensionality reduction methods and band selection. Canadian Journal of Remote Sensing, 34, 26–32.

    Article  Google Scholar 

  • Delalieux, S., Van Aardt, J., Keulemans, W., Schrevens, E., & Coppin, P. (2007). Detection of biotic stress (Venturia inaequalis) in apple trees using hyperspectral data: Non-parametric statistical approaches and physiological implications. European Journal of Agronomy, 27, 130–143.

    Article  Google Scholar 

  • Devadas, R., Lamb, D. W., Simpfendorfer, S., & Backhouse, D. (2004). Evaluating ten spectral vegetation indices for identifying rust infection in individual wheat leaves. Precision Agriculture, 10, 459–470.

    Article  Google Scholar 

  • Du, Q., French, J. V., Skaria, M., Yang, C., and Everitt, J. H. (2004). Citrus pest stress monitoring using airborne hyperspectral imagery. In IEEE (Ed.), Conference proceedings of the international geoscience and remote sensing symposia 2004 (vol. VI, pp. 3981–3984). Anchorage: IEEE.

  • Fitzgerald, G. J., Maas, S. J., & Detar, W. R. (2004). Spider mite detection and canopy component mapping in cotton using hyperspectral imagery and spectral mixture analysis. Precision Agriculture, 5, 275–289.

    Article  Google Scholar 

  • Franke, J., & Menz, G. (2007). Multi-temporal wheat disease detection by multi-spectral remote sensing. Precision Agriculture, 8, 161–172.

    Article  Google Scholar 

  • Garcia-Ruiz, F., Sankaran, S., Maja, J. M., Lee, W. S., Rasmussen, J., & Ehsani, R. (2013). Comparison of two aerial imaging platforms for identification of Huanglongbing-infected citrus trees. Computers and Electronics in Agriculture, 91, 106–115.

    Article  Google Scholar 

  • Hillnhütter, C., & Mahlein, A. K. (2008). Early detection and localization of sugar beet diseases: New approaches. Gesunde Pflanzen, 60(4), 143–149.

    Article  Google Scholar 

  • Hou, J. W., Mi, W. B., & Li, L. T. (2014). Spatial quality evaluation for drinking water based on GIS and ant colony clustering algorithm. Journal of Central South University of Technology, 21, 1051–1057.

    Article  CAS  Google Scholar 

  • Huang, W., Lamb, D. W., Niu, Z., Zhang, Y., Liu, L., & Wang, J. (2007). Identification of yellow rust in wheat using in situ spectral reflectance measurements and airborne hyperspectral imaging. Precision Agriculture, 8, 187–197.

    Article  Google Scholar 

  • Jacobi, J., and Kühbauch, W. (2005). Site-specific identification of fungal infection and nitrogen deficiency in wheat crop using remote sensing. In J. V. Stafford (Ed.), Proceedings of the 5th European Conference on Precision Agriculture, (pp. 73–80). Netherlands: Wageningen Acadamic Publishers.

  • Larsolle, A., & Muhammed, H. H. (2007). Measuring crop status using multivariate analysis of hyperspectral field reflectance with application to disease severity and plant density. Precision Agriculture, 8, 37–47.

    Article  Google Scholar 

  • Li, H., Lee, W. S., Wang, K., Ehsani, R., & Yang, C. H. (2014). ‘Extended spectral angle mapping (ESAM)’ for citrus greening disease detection using airborne hyperspectral imaging. Precision Agriculture, 15, 162–183.

    Article  Google Scholar 

  • Liu, Z. Y., Wu, H. F., & Huang, J. F. (2010). Application of neural networks to discriminate fungal infection levels in rice panicles using hyperspectral reflectance and principal components analysis. Computer and Electronics in Agriculture, 72(2), 99–106.

    Article  Google Scholar 

  • Lu, S., Oki, K., Shimizu, Y., & Omasa, K. (2007). Comparison between several feature extraction/classification methods for mapping complicated agricultural land use patches using airborne hyperspectral data. International Journal of Remote Sensing, 28, 963–984.

    Article  Google Scholar 

  • Mahlein, A. K., Oerke, E. C., Steiner, U., & Dehne, H. W. (2012a). Recent advances in sensing plant diseases for precision crop protection. European Journal of Plant Pathology, 133(1), 197–209.

    Article  CAS  Google Scholar 

  • Mahlein, A. K., Rumpf, T., Welke, P., Dehne, H. W., Plümer, L., Steiner, U., et al. (2013). Development of spectral vegetation indices for detecting and identifying plant diseases. Remote Sensing of Environment, 128, 21–30.

    Article  Google Scholar 

  • Mahlein, A. K., Steiner, U., Dehne, H. W., & Oerke, E. C. (2010). Spectral signatures of sugar beet leaves for the detection and differentiation of diseases. Precision Agriculture, 11, 413–431.

    Article  Google Scholar 

  • Mahlein, A. K., Steiner, U., Hillnhütter, C., Dehne, H. W., & Oerke, E. C. (2012b). Hyperspectral imaging for small-scale analysis of symptoms caused by different sugar beet diseases. Plant Methods, 8(3), 1–16.

    Google Scholar 

  • Maliogka, V. I., Dovas, C. I., Lotos, L., Efthimiou, K., & Katis, N. I. (2009). Complete genome analysis and immunodetection of a member of a novel virus species belonging to the genus Ampelovirus. Archives of Virology, 154, 209–218.

    Article  CAS  PubMed  Google Scholar 

  • Martelli, G. P. (2000). Major graft-transmissible diseases of grapevines: Nature, diagnosis, and sanitation. In Proceedings of the ASEV 50th Anniversary Annual Meeting, Seattle,Washington, pp. 231–236.

  • Maselli, F. (2004). Monitoring forest conditions in a protected Mediterranean coastal area by the analysis of multiyear NDVI data. Remote Sensing of Environent, 89, 423–433.

    Article  Google Scholar 

  • Mewes, T., Franke, J., & Menz, G. (2011). Spectral requirements on airborne hyperspectral remote sensing data for wheat disease detection. Precision Agriculture, 12, 795–812.

    Article  Google Scholar 

  • Mirik, M., Michels, G. J, Jr, Kassymzhanova-Mirik, S., & Elliott, N. C. (2007). Reflectance characteristics of Russian wheat aphid (Hemiptera: Aphididae) stress and abundance in winter wheat. Computers and Electronics in Agriculture, 57(2), 123–134.

    Article  Google Scholar 

  • Moshou, D., Bravo, C., Oberti, R., West, J., Bodria, L., McCartney, A., et al. (2005). Plant disease detection based on data fusion of hyper-spectral and multi-spectral fluorescence imaging using kohonen maps. Real Time Imaging Journal-Special Issue on spectral Imaging II, 11(2), 75–83.

    Article  Google Scholar 

  • Moshou, D., Bravo, C., Oberti, R., West, J. S., Ramon, H., Vougioukas, S., et al. (2011). Intelligent multi-sensor system for the detection and treatment of fungal diseases in arable crops. Biosystems Engeneering, 108(4), 311–321.

    Article  Google Scholar 

  • Moshou, D., Bravo, C., West, J., Wahlen, S., McCartney, A., & Ramon, H. (2004). Automatic detection of “yellow rust” in wheat using reflectance measurements and neural networks. Computers and Electronics in Agriculture, 44(3), 173–188.

    Article  Google Scholar 

  • Naidu, R. A., Perry, E. M., Pierce, F. J., & Mekuria, T. (2009). The potential of spectral reflectance technique for the detection of Grapevine leafroll-associated virus-3 in two red-berried wine grape cultivars. Computers and Electronics in Agriculture, 66, 38–45.

    Article  Google Scholar 

  • Oumar, Z., Mutanga, O., & Ismail, R. (2013). Predicting Thaumastocoris peregrinus damage using narrow band normalized indices and hyperspectral indices using field spectra resampled to the Hyperion sensor. International Journal of Applied Earth Observation and Geoinformation, 21, 113–121.

    Article  Google Scholar 

  • Polder, G., van der Heijden, G. W. A. M., van Doorn, J., & Baltissen, T. A. H. M. C. (2014). Automatic detection of tulip breaking virus (TBV) in tulip fields using machine vision. Bioprocess and Biosystems Engineering, 117, 35–42.

    Article  Google Scholar 

  • Prabhakar, M., Prasad, Y. G., Thirupathi, M., Sreedevi, G., Dharajothi, B., & Venkateswarlu, B. (2011). Use of ground based hyperspectral remote sensing for detection of stress in cotton caused by leafhopper (Hemiptera: Cicadellidae). Computers and Electronics in Agriculture, 79(2), 189–198.

    Article  Google Scholar 

  • Rowhani, A., Uyemoto, J. K., & Golino, D. A. (1997). A comparison between serological and biological assays in detecting grapevine leafroll associated viruses. Plant Disease, 81, 799–801.

    Article  Google Scholar 

  • Rumpf, T., Mahlein, A. K., Steiner, U., Oerke, E. C., Dehne, H. W., & Plümer, L. (2010). Early detection and classification of plant diseases with support vector machines based on hyperspectral reflectance. Computers and Electronics in Agriculture, 74(1), 91–99.

    Article  Google Scholar 

  • Santoso, H., Gunawan, T., Jatmiko, R. H., Darmosarkoro, W., & Minasny, B. (2011). Mapping and identifying basal stem rot disease in oil palms in North Sumatra with QuickBird imagery. Precision Agriculture, 12(2), 233–248.

    Article  Google Scholar 

  • Shafri, H. Z. M., & Hamdan, N. (2009). Hyperspectral imagery for mapping disease infection in oil palm plantation using vegetation indices and red edge techniques. American Journal of Applied Sciences, 6, 1031–1035.

    Article  Google Scholar 

  • Shaw, D., & Kelley, F. (2005). Evaluating remote sensing for determining and classifying soybean anomalies. Precision Agriculture, 6(5), 421–429.

    Article  Google Scholar 

  • Steddom, K., Bredehoeft, M. W., Khan, M., & Rush, C. M. (2005). Comparison of visual and multispectral radiometric disease evaluations of Cercospora leaf spot of sugar beet. Plant Disease, 89, 153–158.

    Article  Google Scholar 

  • Wahabzada, M., Mahlein, A. K., Bauckhage, C., Steiner, M., Oerke, E. C., & Kersting, K. (2015). Metro maps of plant disease dynamics—automated mining of differences using hyperspectral images. Public Library of Science One, 10(1), 1–20.

    CAS  Google Scholar 

  • Wang, F. M., Huang, J. F., Tang, Y. L., & Wang, X. Z. (2007). New vegetation index and its application in estimating leaf area index of rice. Rice Science, 14, 195–203.

    Article  Google Scholar 

  • Wang, X., Zhang, M., Zhu, J., & Geng, S. (2008). Spectral prediction of Phytophthora infestans infection on tomatoes using artificial neural network (ANN). International Journal of Remote Sensing, 29(6), 1693–1706.

    Article  Google Scholar 

  • West, J. S., Bravo, C., Oberti, R., Lemaire, D., Moshou, D., & McCartney, H. A. (2003). The potential of optical canopy measurement for targeted control of field crop diseases. Annual review of Phytopathology, 41, 593–614.

    Article  CAS  PubMed  Google Scholar 

  • Wu, D., Feng, L., Zhang, C., & He, Y. (2008). Early detection of Botrytis cinerea on eggplant leaves based on visible and near-infrared spectroscopy. Transactions of the ASABE, 51(3), 1113–1139.

    Google Scholar 

  • Wu, J., Wang, D., Rosen, C. J., & Bauer, M. E. (2006). Comparison of petiole nitrate concentrations, spad chlorophyll readings, and QuickBird satellite imagery in detecting nitrogen status of potato canopies. Field Crops Research, 101, 96–103.

    Article  Google Scholar 

  • Xiao, Q. F. (2005). Tree health mapping with multispectral remote sensing data at UC Davis, California. Urban Ecosystems, 8, 349–361.

    Article  Google Scholar 

  • Yang, C. M. (2010). Assessment of the severity of bacterial leaf blight in rice using canopy hyperspectral reflectance. Precision Agriculture, 11, 61–81.

    Article  Google Scholar 

  • Zhang, M., Liu, X., & Oneill, M. (2002). Spectral Discrimination of Phytophthora infestans infection on tomatoes based on principal component and cluster analyses. International Journal of Remote Sensing, 23(6), 1095–1107.

    Article  Google Scholar 

  • Zhang, M., Qin, Z., & Liu, X. (2005). Remote sensed spectral imagery to detect late blight in field tomatoes. Precision Agriculture, 6, 489–508.

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to anonymous reviewers and the editor Selvarani Gnanadurai for some very helpful comments. The study was funded by the Key Project of Scientific Research Institutions of Higher Learning in Ningxia (NGY2013005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingwei Hou.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, J., Li, L. & He, J. Detection of grapevine leafroll disease based on 11-index imagery and ant colony clustering algorithm. Precision Agric 17, 488–505 (2016). https://doi.org/10.1007/s11119-016-9432-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-016-9432-2

Keywords

Navigation