Skip to main content
Log in

Using active canopy sensors and chlorophyll meters to estimate grapevine nitrogen status and productivity

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

Effects of nitrogen (Ν) and water supply on grapevine leaf transmittance and canopy reflectance were studied over 2 years (2009–2010) in two vineyards planted with cvs. Cabernet Sauvignon and Xinomavro (Vitis vinifera L.) located in northern Greece. Three N (0, 60 and 120 kg ha−1) and two irrigation (irrigated at 70 % of crop evapotranspiration and non-irrigated) treatments were managed in triplicate in randomized blocks. Measurements with two transmittance-based chlorophyll meters (CM: SPAD-502 and CCM-200) and two active canopy sensors (Crop Circle ACS-210; amber band and Crop Circle ACS-430; red and red edge bands) were conducted on four and two growth stages, respectively. Fertilization increased leaf N and chlorophyll concentrations, as well as CM readings and vegetation indices. The CCM and SPAD values did not vary across growth stages and better estimated leaf N and chlorophyll concentrations in Cabernet Sauvignon than in Xinomavro. The SPAD readings provided better predictions of leaf N concentration. The vegetation indices of the ACS-430 sensor correlated with leaf N and chlorophyll concentrations and dormant wood in Cabernet Sauvignon; the red edge-based indices were generally more efficient than the red-based indices. Consistent relationships were observed for all ACS-430 indices with yield and for red edge-based indices with total phenols early in the season for both vineyards. The correlation between ACS-210 sensor indices and vine properties was low. These results showed that the two technologies examined could provide information on grapevine performance early in the season but have limitations that may restrict their use in vineyards because the acquired relationships were not consistent across vineyards and instruments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts—Polyphenoloxidase in Beta vulgaris. Plant Physiology, 24, 1–15.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Baluja, J., Diago, M. P., Goovaerts, P., & Tardaguila, J. (2012). Assessment of the spatial variability of anthocyanins in grapes using a fluorescence sensor: Relationships with vine vigour and yield. Precision Agriculture, 13, 457–472.

    Article  Google Scholar 

  • Barker, D., & Sawyer, J. (2010). Using active canopy sensors to quantify corn nitrogen stress and nitrogen application rate. Agronomy Journal, 102, 964–971.

    Article  CAS  Google Scholar 

  • Bell, S. J., & Robson, A. (1999). Effect of nitrogen fertilization on growth, canopy density, and yield of Vitis vinifera L. cv. Cabernet Sauvignon. American Journal of Enology and Viticulture, 50, 351–358.

    Google Scholar 

  • Bergqvist, J., Dokoozlian, N., & Ebisuda, N. (2001). Sunlight exposure and temperature effects on berry growth and composition of Cabernet Sauvignon and Grenache in the Central San Joaquin Valley of California. American Journal of Enology and Viticulture, 52, 1–7.

    CAS  Google Scholar 

  • Bramley, R. G. V. (2010). Precision viticulture: Managing vineyard variability for improved quality outcomes. Managing wine quality: Viticulture & wine quality, 1, 445–480.

    Article  Google Scholar 

  • Bramley, R. G. V., Le Moigne, M., Evain, S., Ouzman, J., Florin, L., Fadaili, E. M., et al. (2011). On-the-go sensing of grape berry anthocyanins during commercial harvest: Development and prospects. Australian Journal of Grape and Wine Research, 17, 316–326.

    Article  CAS  Google Scholar 

  • Chaves, M. M., Zarrouk, O., Francisco, R., Costa, J. M., Santos, T., Regalado, A. P., et al. (2010). Grapevine under deficit irrigation: Hints from physiological and molecular data. Annals of Botany, 105, 661–676.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Choné, X., Van Leeuwen, C., Dubourdieu, D., & Gaudillère, J. P. (2001). Stem water potential is a sensitive indicator of grapevine water status. Annals of Botany, 87, 477–483.

    Article  Google Scholar 

  • Coombe, B. G. (1995). Growth stages of the grapevine: Adoption of a system for identifying grapevine growth stages. Australian Journal of Grape and Wine Research, 1, 104–110.

    Article  Google Scholar 

  • Dai, Z. W., Ollat, N., Gomes, E., Decroocq, S., Tandonnet, J.-P., Bordenave, L., et al. (2011). Ecophysiological, genetic, and molecular causes of variation in grape berry weight and composition: A review. American Journal of Enology and Viticulture, 62, 413–425.

    Article  CAS  Google Scholar 

  • Drissi, R., Goutouly, J. P., Forget, D., & Gaudillere, J. P. (2008). Nondestructive measurement of grapevine leaf area by ground normalized difference vegetation index. Agronomy Journal, 101, 226–231.

    Article  Google Scholar 

  • Evans, J. R. (1989). Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia, 78, 9–19.

    Article  Google Scholar 

  • Gitelson, A. A., Gritz, Y., & Merzlyak, M. N. (2003). Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. Journal of Plant Physiology, 160, 271–282.

    Article  CAS  PubMed  Google Scholar 

  • Hall, A., Lamb, D., Holzapfel, B., & Louis, J. (2002). Optical remote sensing applications in viticulture—A review. Australian Journal of Grape and Wine Research, 8, 36–47.

    Article  Google Scholar 

  • Hall, A., Lamb, D. W., Holzapfel, B. P., & Louis, J. P. (2011). Within-season temporal variation in correlations between vineyard canopy and winegrape composition and yield. Precision Agriculture, 12, 103–117.

    Article  Google Scholar 

  • Hatfield, J., Gitelson, A., Schepers, J., & Walthall, C. L. (2008). Application of spectral remote sensing for agronomic decisions. Agronomy Journal, 100, S117–S131.

    Article  CAS  Google Scholar 

  • Howell, G. S. (2001). Sustainable grape productivity and the growth-yield relationship: A review. American Journal of Enology and Viticulture, 52, 165–174.

    Google Scholar 

  • Jifon, J. L., Syvertsen, J. P., & Whaley, E. (2005). Growth environment and leaf anatomy affect nondestructive estimates of chlorophyll and nitrogen in Citrus sp leaves. Journal of the American Society for Horticultural Science, 130, 152–158.

    Google Scholar 

  • Johnson, L. F. (2003). Temporal stability of an NDVI-LAI relationship in a Napa Valley vineyard. Australian Journal of Grape and Wine Research, 9, 96–101.

    Article  Google Scholar 

  • Johnson, L. F., Roczen, D. E., Youkhana, S. K., Nemani, R. R., & Bosch, D. F. (2003). Mapping vineyard leaf area with multispectral satellite imagery. Computers and Electronics in Agriculture, 38, 33–44.

    Article  Google Scholar 

  • Keller, M. (2005). Deficit irrigation and vine mineral nutrition. American Journal of Enology and Viticulture, 56, 267–283.

    CAS  Google Scholar 

  • Keller, M., Kummer, M., & Vasconcelos, M. C. (2001). Soil nitrogen utilisation for growth and gas exchange by grapevines in response to nitrogen supply and rootstock. Australian Journal of Grape and Wine Research, 7, 2–11.

    Article  CAS  Google Scholar 

  • Koundouras, S., Hatzidimitriou, E., Karamolegkou, M., Dimopoulou, E., Kallithraka, S., Tsialtas, J. T., et al. (2009). Irrigation and rootstock effects on the phenolic concentration and aroma potential of Vitis vinifera L. cv. Cabernet Sauvignon grapes. Journal of Agricultural and Food Chemistry, 57, 7805–7813.

    Article  CAS  PubMed  Google Scholar 

  • Koundouras, S., Tsialtas, I. T., Zioziou, E., & Nikolaou, N. (2008). Rootstock effects on the adaptive strategies of grapevine (Vitis vinifera L. cv. Cabernet-Sauvignon) under contrasting water status: Leaf physiological and structural responses. Agriculture, Ecosystems & Environment, 128, 86–96.

    Article  Google Scholar 

  • Lamb, D. W., Weedon, M. M., & Bramley, R. G. (2004). Using remote sensing to predict grape phenolics and colour at harvest in a Cabernet Sauvignon vineyard: Timing observations against vine phenology and optimising image resolution. Australian Journal of Grape and Wine Research, 10, 46–54.

    Article  CAS  Google Scholar 

  • Linsenmeier, A. W., Loos, U., & Lohnertz, O. (2008). Must composition and nitrogen uptake in a long-term trial as affected by timing of nitrogen fertilization in a cool-climate riesling vineyard. American Journal of Enology and Viticulture, 59, 255–264.

    CAS  Google Scholar 

  • Markwell, J., Osterman, J. C., & Mitchell, J. L. (1995). Calibration of the Minolta SPAD-502 leaf chlorophyll meter. Photosynthesis Research, 46, 467–472.

    Article  CAS  PubMed  Google Scholar 

  • Meggio, F., Zarco-Tejada, P. J., Nunez, L. C., Sepulcre-Canto, G., Gonzalez, M. R., & Martin, P. (2010). Grape quality assessment in vineyards affected by iron deficiency chlorosis using narrow-band physiological remote sensing indices. Remote Sensing of Environment, 114, 1968–1986.

    Article  Google Scholar 

  • Neilsen, G. H., Neilsen, D., Bowen, P., Bogdanoff, C., & Usher, K. (2010). Effect of timing, rate, and form of N fertilization on nutrition, vigor, yield, and berry yeast-assimilable N of grape. American Journal of Enology and Viticulture, 61, 327–336.

    CAS  Google Scholar 

  • Netto, A. T., Campostrini, E., de Oliveira, J. G., & Bressan-Smith, R. E. (2005). Photosynthetic pigments, nitrogen, chlorophyll a fluorescence and SPAD-502 readings in coffee leaves. Scientia Horticulturae, 104, 199–209.

    Article  Google Scholar 

  • Pinter, P. J, Jr, Hatfield, J. L., Schepers, J. S., Barnes, E. M., Moran, M. S., Daughtry, C. S., et al. (2003). Remote sensing for crop management. Photogrammetric Engineering and Remote Sensing, 69, 647–664.

    Article  Google Scholar 

  • Poni, S., Intrieri, C., & Silvestroni, O. (1994). Interactions of leaf age, fruiting, and exogenous cytokinins in Sangiovese grapevines under non-irrigated conditions. II. Chlorophyll and nitrogen content. American Journal of Enology and Viticulture, 45, 278–284.

    CAS  Google Scholar 

  • Ribéreau-Gayon, P., & Stonestreet, E. (1965). Le dosage des anthocyanes dans les vins rouges. Bulletin de la Societé Chimique de France, 9, 2649–2652.

    PubMed  Google Scholar 

  • Ribéreau-Gayon, P., & Stonestreet, E. (1966). Dosage des tanins du vin rouge et détermination de leur structure. Chimie Analytique, 48, 188–196.

    Google Scholar 

  • Robinson, J. B. (2005). Critical plant tissue values and application of nutritional standards for practical use in vineyards. In Soil environment and vine mineral nutrition symposium (pp. 61–68). San Diego, California, USA. American Society forEnology and Viticulture.

  • Romero, P., Fernández-Fernández, J., & Martinez-Cutillas, A. (2010). Physiological thresholds for efficient regulated deficit-irrigation management in winegrapes grown under semiarid conditions. American Journal of Enology and Viticulture, 61, 300–312.

    Article  Google Scholar 

  • Rouse, J.W. Jr., Haas, R.H., Schell, J.A., & Deering, D.W. (1973). Monitoring vegetation systems in the great plains with ERTS. Proceedings of the 3rd ERTS Symposium, NASA SP-351 (U.S. Government Printing Office: Washington DC.), 1, 309–317.

  • Saint-Criq, N., Vivas, N., & Glories, Y. (1998). Maturité phénolique: définition et contrôle. Revue Française d’Oenologie, 173, 22–25.

    Google Scholar 

  • Schepers, J. S., Francis, D. D., & Thompson, M. T. (1989). Simultaneous determination of total C, total N, and 15 N on soil and plant material 1. Communications in Soil Science and Plant Analysis, 20, 949–959.

    Article  CAS  Google Scholar 

  • Schepers, J. S., Francis, D. D., Vigil, M., & Below, F. E. (1992). Comparison of corn leaf nitrogen concentration and chlorophyll meter readings. Communications in Soil Science and Plant Analysis, 23, 2173–2187.

    Article  CAS  Google Scholar 

  • Smart, R. (1991). Canopy microclimate implications for nitrogen effects on yield and quality. In M. J. Rantz (Ed.), Proceedings of the International Symposium on nitrogen in grapes and wine (pp. 90–101). Seattle, Washington: American Society for Enology and Viticulture, ASEV.

    Google Scholar 

  • Stamatiadis, S., Taskos, D., Tsadila, E., Christofides, C., Tsadilas, C., & Schepers, J. S. (2010). Comparison of passive and active canopy sensors for the estimation of vine biomass production. Precision Agriculture, 11, 306–315.

    Article  Google Scholar 

  • Stamatiadis, S., Taskos, D., Tsadilas, C., Christofides, C., Tsadila, E., & Schepers, J. S. (2006). Relation of ground-sensor canopy reflectance to biomass production and grape color in two merlot vineyards. American Journal of Enology and Viticulture, 57, 415–422.

    CAS  Google Scholar 

  • Steele, M., Gitelson, A. A., & Rundquist, D. (2008). Nondestructive estimation of leaf chlorophyll content in grapes. American Journal of Enology and Viticulture, 59, 299–305.

    CAS  Google Scholar 

  • Tagarakis, A., Liakos, V., Fountas, S., Koundouras, S., & Gemtos, T. A. (2012). Management zones delineation using fuzzy clustering techniques in grapevines. Precision Agriculture, 14, 18–39.

    Article  Google Scholar 

  • Van Leeuwen, C., Trégoat, O., Choné, X., Gaudillère, J. P., & Pernet, D. (2008). Different environmental conditions, different results: The role of controlled environmental stress on grape quality potential and the way to monitor it. In R. Blair (Ed.), Proceedings of the Thirteenth Australian wine industry technical conference (pp. 39–46). Adelaide, South Australia, 28 July to 2 August 2007. Winetitles.

  • Williams, L. E., Phene, C. J., Grimes, D. W., & Trout, T. J. (2003). Water use of mature Thompson Seedless grapevines in California. Irrigation Science, 22, 11–18.

    Google Scholar 

  • Yang, C., & Everitt, J. H. (2000). Relationships between yield monitor data and airborne multispectral digital imagery. In Proceedings of the 5th International Conference on Precision Agriculture (pp. 1–14). Bloomington, Minnesota, USA.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. G. Taskos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taskos, D.G., Koundouras, S., Stamatiadis, S. et al. Using active canopy sensors and chlorophyll meters to estimate grapevine nitrogen status and productivity. Precision Agric 16, 77–98 (2015). https://doi.org/10.1007/s11119-014-9363-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-014-9363-8

Keywords

Navigation