Skip to main content

Advertisement

Log in

Computational simulation of wireless sensor networks for pesticide drift control

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

The efficient application of low cost pesticides is a challenge for agricultural production. Pesticide drift is a major cause of environmental contamination. At the time of application, it is essential to know the environmental conditions, such as wind, temperature and humidity to minimize contamination. This study proposes the use of wireless sensor networks in a support and control system for crop spraying and three cases of use are put forward. In the first case, the sensor network evaluates environmental data at the time of application to notify the user if the environmental conditions are suitable. The second use evaluates the wind speed and direction to suggest corrections in the path of a spray vehicle. Due to this alteration in the path, the pesticide is applied solely in the appropriate area. The final use involves collecting samples and analyzing the quality of crop spraying by evaluating the deposition of the pesticide over the crop. Through computer simulations, wireless sensor networks are shown to be useful in crop spraying operation to minimize and to control pesticide drift, to improve the quality of application, to reduce environmental contamination and to save time and money.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. OMNet ++ Network Simulation Framework—http://www.omnetpp.org/

  2. MiXiM Project—http://mixim.sourceforge.net/

References

  • Adrian, A. M., Norwood, S. H., & Mask, P. L. (2005). Producers’ perceptions and attitudes toward precision agriculture technologies. Computers and Electronics in Agriculture, 48, 256–271. doi:10.1016/j.compag.2005.04.004.

    Article  Google Scholar 

  • Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor networks: A survey. Computer Networks, 38, 393–422. doi:10.1016/S1389-1286(01)00302-4.

    Article  Google Scholar 

  • Bregaglio, S., Donatelli, M., Confalonieri, R., Acutis, M., & Orlandini, S. (2011). Multi metric evaluation of leaf wetness models for large-area application of plant disease models. Agricultural and Forest Meteorology, 151, 1163–1172. doi:10.1016/j.agrformet.2011.04.003.

    Article  Google Scholar 

  • Camilli, A., Cugnasca, C. E., Saraiva, A. M., Hirakawa, A. R., & Corrêa, P. L. P. (2007). From wireless sensors to field mapping: Anatomy of an application for precision agriculture. Computers and Electronics in Agriculture, 58, 25–36.

    Article  Google Scholar 

  • Craig, I. (2004). The GDS model—A rapid computational technique for the calculation of aircraft spray drift buffer distances. Computers and Electronics in Agriculture, 43, 235–250. doi:10.1016/j.compag.2004.02.001.

    Article  Google Scholar 

  • Dammer, K.-H., Thöle, H., Volk, T., & Hau, B. (2009). Variable-rate fungicide spraying in real time by combining a plant cover sensor and a decision support system. Precision Agriculture, 10, 431–442. doi:10.1007/s11119-008-9088-7.

    Article  Google Scholar 

  • Darr, M., & Hudson, K. (2004). Standardization of electronics in machinery systems: ISO 11783 nears completion for ag, construction, and forestry equipment. Engineering & Technology for a Sustainable World, 11, 13–14.

    Google Scholar 

  • Estrin, D., Girod, L., Pottie, G., Srivastava, M. (2001) Instrumenting the world with wireless sensor networks. In: Proceedings of IEEE international conference on acoustics, speech, and signal processing (ICASSP’01) (Vol. 4, pp. 2033–2036).

  • Faludi, R. (2010). Building wireless sensor networks. O’Reilly Media, Sebastopol. ISBN 978-0-596-80773-3.

  • Giles, D. K., & Downey, D. (2003). Quality control verification and mapping for chemical application. Precision Agriculture, 4, 103–124. doi:10.1023/A:1021871207195.

    Article  Google Scholar 

  • Hewitt, A. (2000). Spray drift: Impact of requirements to protect the environment. Crop Protection, 19, 623–627. doi:10.1016/S0261-2194(00)00082-X.

    Article  Google Scholar 

  • Holterman, H., van de Zande, J., Porskamp, H. A., & Huijsmans, J. F. (1997). Modelling spray drift from boom sprayers. Computers and Electronics in Agriculture, 19, 1–22. doi:10.1016/S0168-1699(97)00018-5.

    Article  Google Scholar 

  • Kwong, K. H., Sasloglou, K., Goh, H. G., Wu, T. T. (2009) Adaptation of wireless sensor network for farming industries. In IEEE proceedings of sixth international conference on networked sensing systems (INSS) (pp. 1–4). Pittsburgh.

  • Lan, Y., Thomson, S. J., Huang, Y., Hoffmann, W. C., & Zhang, H. (2010). Current status and future directions of precision aerial application for site-specific crop management in the USA. Computers and Electronics in Agriculture, 74, 34–38. doi:10.1016/j.compag.2010.07.001.

    Article  Google Scholar 

  • Larbi, P. A., & Salyani, M. (2012). CitrusSprayEx: An expert system for planning citrus spray applications. Computers and Electronics in Agriculture, 87, 85–93. doi:10.1016/j.compag.2012.05.005.

    Article  Google Scholar 

  • Lebeau, F., Verstraete, A., Stainier, C., & Destain, M. F. (2011). RTDrift: A real time model for estimating spray drift from ground applications. Computers and Electronics in Agriculture, 77, 161–174. doi:10.1016/j.compag.2011.04.009.

    Article  Google Scholar 

  • Lee, W. S., Slaughter, D. C., & Giles, D. K. (1999). Robotic weed control system for tomatoes. Precision Agriculture, 1, 95–113.

    Article  Google Scholar 

  • Oliveira, H. A. B. F., Barreto, R. S., Fontao, A. L., Loureiro, A. A. F. (2010) A Novel greedy forward algorithm for routing data toward a high speed sink in wireless sensor networks. In IEEE proceedings of 19th international conference on computer communications and networks (ICCCN) (pp. 1–7), Zurich.

  • Ortiz, B. V., Thomson, S. J., Huang, Y., Reddy, K. N., & Ding, W. (2011). Determination of differences in crop injury from aerial application of glyphosate using vegetation indices. Computers and Electronics in Agriculture, 77, 204–213. doi:10.1016/j.compag.2011.05.004.

    Article  Google Scholar 

  • Pérez-Ruiz, M., Agüera, J., Gil, J. A., & Slaughter, D. C. (2011). Optimization of agrochemical application in olive groves based on positioning sensor. Precision Agriculture, 12, 564–575. doi:10.1007/s11119-010-9200-7.

    Article  Google Scholar 

  • Pottie, G. J., & Kaiser, W. J. (2000). Wireless integrated network sensors. Communications of ACM, 43, 51–58. doi:10.1145/332833.332838.

    Article  Google Scholar 

  • Qiao, X., Zhang, X., Wang, C., Ren, D., & He, X. (2005). Application of the wireless sensor networks in agriculture. Transactions of the Chinese Society of Agricultural Engineering, Z2, 232–234.

    Google Scholar 

  • Reyes, J. F., Correa, C., Esquivel, W., & Ortega, R. (2012). Development and field testing of a data acquisition system to assess the quality of spraying in fruit orchards. Computers and Electronics in Agriculture, 84, 62–67. doi:10.1016/j.compag.2012.02.018.

    Article  Google Scholar 

  • Varga, A. (2010). OMNeT++. Modeling and tools for network simulation. Aachen: Springer. ISBN: 978-3-642-12330-6.

  • Vlajic, N., Xia, D. (2006) Wireless sensor networks: to cluster or not to cluster? In IEEE proceedings of international symposium on a world of wireless, mobile and multimedia networks. (WoWMoM 2006) (p. 268). Buffalo-Niagara Falls.

  • Zhang, N., Wang, M., & Wang, N. (2002). Precision agriculture—A worldwide overview. Computers and Electronics in Agriculture, 36, 113–132. doi:10.1016/S0168-1699(02)00096-0.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to express their gratitude to the State of Mato Grosso Research Foundation (FAPEMAT); the Brazilian Coordination for the Improvement of Higher Education Personnel (CAPES); and the National Science and Technology Institute for Critical Embedded Systems (INCT-Sec) for sponsoring this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivairton Monteiro Santos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santos, I.M., da Costa, F.G., Cugnasca, C.E. et al. Computational simulation of wireless sensor networks for pesticide drift control. Precision Agric 15, 290–303 (2014). https://doi.org/10.1007/s11119-014-9353-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-014-9353-x

Keywords

Navigation