Skip to main content
Log in

Oenological significance of vineyard management zones delineated using early grape sampling

  • Published:
Precision Agriculture Aims and scope Submit manuscript

An Erratum to this article was published on 10 January 2014

Abstract

Early definition of oenologically significant zones within a vineyard is one of the main goals of precision viticulture, as it would allow an increase in profitability through the adaptation of agronomic practices to the specific requirements of each zone, and/or segregation of the harvest into different batches to produce wines with different qualities. The aim of this work was to evaluate whether early grape sampling is a relevant tool for within-vineyard zone definition. The study was carried out in 2010 and 2011 in a 4.2 ha vineyard, where a grid of 60 sampling points was defined. 300-berry samples were picked from each sampling point after veraison and at harvest, post-veraison information being used to define zones within the vineyard after fuzzy k-means analysis and subsequent application of a zoning procedure that took into account membership degree and neighbourhood criteria. Two variations of the zoning procedure were used, standard (StdZ) and top (TopZ) zoning. Each was designed to meet different requirements of wineries; StdZ gave the same oenological relevance to all the zones, and TopZ differentiated the zones producing “top class” grapes, minimizing the within-zone variability in the top-class zone. Grape composition obtained at harvest from the zones delineated post-veraison was compared. Zone delineation using post-veraison data was proved to be oenologically relevant, provided sampling is performed once veraison is completed. The two zoning algorithms designed were shown to be suitable for objective zone delineation according to the goals intended for each.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aerny, J. (1996). Composés azotés des moûts et des vins [Nitrogen compounds of musts and wines]. Revue Suisse de viticulture. Arboriculture et Horticulture, 28, 161–165.

    Google Scholar 

  • Arnó, J., Martinez-Casasnovas, J. A., Ribes-Dasi, M., & Rosell, J. R. (2011). Clustering of grape yield maps to delineate site-specific management zones. Spanish Journal of Agricultural Research, 9(3), 721–729.

    Article  Google Scholar 

  • Arnó, J., Rosell, J. R., Blanco, R., Ramos, M. C., & Martinez-Casasnovas, J. A. (2012). Spatial variability in grape yield and quality influenced by soil and crop nutrition characteristics. Precision Agriculture, 13(3), 393–410.

    Article  Google Scholar 

  • Baluja, J., Diago, M. P., Goovaerts, P., & Tardaguila, J. (2012a). Assessment of the spatial variability of grape anthocyanins using a fluorescence sensor. Relationships with vine vigour and yield. Precision Agriculture, 13(4), 457–472.

    Article  Google Scholar 

  • Baluja, J., Diago, M. P., Goovaerts, P., & Tardaguila, J. (2012b). Spatio-temporal dynamics of grape anthocyanin accumulation in a Tempranillo vineyard monitored by proximal sensing. Australian Journal of Grape and Wine Research, 18(2), 173–182.

    Article  CAS  Google Scholar 

  • Baluja, J., Tardaguila, J., Ayestaran, B., & Diago, M. P. (2013). Spatial variability of grape composition in a Tempranillo (Vitis vinifera L.) vineyard over a 3-year survey. Precision Agriculture, 14(1), 40–58.

    Article  Google Scholar 

  • Boydell, B., & McBratney, A. B. (2002). Identifying potential within-field management zones from cotton-yield estimates. Precision Agriculture, 3(1), 9–23.

    Article  Google Scholar 

  • Bramley, R. G. V. (2005). Understanding variability in winegrape production systems 2. Within vineyard variation in quality over several vintages. Australian Journal of Grape and Wine Research, 11(1), 33–42.

    Article  Google Scholar 

  • Bramley, R. G. V., & Hamilton, R. P. (2004). Understanding variability in winegrape production systems 1. Within vineyard variation in yield over several vintages. Australian Journal of Grape and Wine Research, 10(1), 32–45.

    Article  Google Scholar 

  • Bramley, R. G. V., & Hamilton, R. P. (2007). Terroir and precision viticulture: Are they compatible? Journal International des Sciences de la Vigne et du Vin, 41(1), 1–8.

    Google Scholar 

  • Bramley, R. G. V., Ouzman, J., & Boss, P. K. (2011a). Variation in vine vigour, grape yield and vineyard soils and topography as indicators of variation in the chemical composition of grapes, wine and wine sensory attributes. Australian Journal of Grape and Wine Research, 17(2), 217–229.

    Article  CAS  Google Scholar 

  • Bramley, R. G. V., Ouzman, J., & Thornton, C. (2011b). Selective harvesting is a feasible and profitable strategy even when grape and wine production is geared towards large fermentation volumes. Australian Journal of Grape and Wine Research, 17(3), 298–305.

    Article  CAS  Google Scholar 

  • Bramley, R. G. V., Proffitt, A. P. B., Hinze, C. J., Pearse, B., & Hamilton, R. P. (2005). Generating benefits from precision viticulture through selective harvesting. In J. V. Stafford (Ed.), 5th European conference on precision agriculture. The Netherlands: Wageningen Academic Publishers pp. 891-898.

  • Cerovic, Z. G., Moise, N., Agati, G., Latouche, G., Ghozlen, N. B., & Meyer, S. (2008). New portable optical sensors for the assessment of winegrape phenolic maturity based on berry fluorescence. Journal of Food Composition and Analysis, 21(8), 650–654.

    Article  CAS  Google Scholar 

  • Delaunay, B. (1934). Sur la sphère vide [About the empty sphere]. Izvestia Akademii Nauk SSSR, 7, 793–800.

    Google Scholar 

  • Fridgen, J. J., Fraisse, C. W., Kitchen, N. R., & Sudduth, K. A. (2000). Delineation and analysis of site-specific management zones. In Second international conference on geospatial information in Agriculture and Forestry. Lake Buena Vista, FL. 10–12 Jan 2000. Ann Arbor, MI: ERIM Int., pp. (402–411).

  • Garcia, S., Santesteban, L. G., Miranda, C., & Royo, J. B. (2011). Variety and storage time affect the compositional changes that occur in grape samples after frozen storage. Australian Journal of Grape and Wine Research, 17(2), 162–168.

    Article  CAS  Google Scholar 

  • Glories, Y., & Augustin, M. (1993). Maturité phénolique du raisin, conséquences technologiques: application aux millésimes 1991 et 1992 [Phenolic ripeness of grapes, technological consequences: application to vintages 1991 and 1992] Journée technique du C.I.V.B.: Actes du colloque, Bordeaux, (pp.56–61).

  • Guillaume, S., Charnomordic, B. & Tisseyre, B. (2012). Open source software for modelling using agro-environmental georeferenced data. In IEEE International Conference on Fuzzy Systems. IEEE Catalog Number: CFP12FUZ-USB, (pp. 1074–1081).

  • Hall, A., Lamb, D. W., Holzapfel, B. P., & Louis, J. P. (2011). Within-season temporal variation in correlations between vineyard canopy and winegrape composition and yield. Precision Agriculture, 12(1), 103–117.

    Article  Google Scholar 

  • Huglin, P., & Schneider, C. (1998). Biologie et écologie de la vigne [Biology and ecology of the vineyard]. Paris: Ed. Lavoisier Tec & Doc.

    Google Scholar 

  • Johnson, L. F., Roczen, D. E., Youkhana, S. K., Nemani, R. R., & Bosch, D. F. (2003). Mapping vineyard leaf area with multispectral satellite imagery. Computers and Electronics in Agriculture, 38(1), 33–44.

    Article  Google Scholar 

  • Keller, M. (2010). The Science of grapevines: Anatomy and physiology. Burlington: Elsevier.

    Google Scholar 

  • Kontoudakis, N., Esteruelas, M., Fort, F., Canals, J. M., De Freitas, V., & Zamora, F. (2011). Influence of the heterogeneity of grape phenolic maturity on wine composition and quality. Food Chemistry, 124(3), 767–774.

    Article  CAS  Google Scholar 

  • Lamb, D. W., Weedon, M. M., & Bramley, R. G. V. (2004). Using remote sensing to predict grape phenolics and colour at harvest in a Cabernet Sauvignon vineyard: Timing observations against vine phenology and optimising image resolution. Australian Journal of Grape and Wine Research, 10(1), 46–54.

    Article  CAS  Google Scholar 

  • Martínez-Casasnovas, J. A., Agelet-Fernandez, J., Arnó, J., & Ramos, M. C. (2012). Analysis of vineyard differential management zones and relation to vine development, grape maturity and quality. Spanish Journal of Agricultural Research, 10(2), 326–337.

    Article  Google Scholar 

  • McBratney, A. B., & Moore, A. W. (1985). Application of fuzzy sets to climatic classification. Agricultural and Forest Meteorology, 35(1–4), 165–185.

    Article  Google Scholar 

  • Proffitt, A. P. B., & Pearse, B. (2004). Adding value to the wine business precisely: using precision viticulture technology in Margaret River. The Australian and New Zealand Grapegrower and Winemaker, 491, 40–44.

    Google Scholar 

  • Sahai, H., & Ojeda, M. M. (2004). Analysis of variance for random models: Theory, methods, applications and data analysis. Boston: Birkäuser.

    Book  Google Scholar 

  • Santesteban, L. G., Guillaume, S., Royo, J. B., & Tisseyre, B. (2013). Are precision agriculture tools and methods relevant at the whole-vineyard scale? Precision Agriculture, 14(1), 2–17.

    Article  Google Scholar 

  • Santesteban, L. G., Miranda, C., Jiménez, C., Fuentemilla, M., Urretavizcaya, I., Tisseyre, B., et al. (2010). Evaluación del interés del índice NDVI para la delimitación de unidades de manejo diferenciado (UMD) en una explotación vitícola [Evaluation of the interest of NDVI to identify distinct management units in vineyards]. Revista de Teledetección, 33, 11–16.

    Google Scholar 

  • Santesteban, L. G., Miranda, C., & Royo, J. B. (2011). Thinning intensity and water regime affect the impact cluster thinning has on grape quality. Vitis, 50(4), 159–165.

    Google Scholar 

  • Santos, A. O., Wample, R. L., Sachidhanantham, S., & Kaye, O. (2012). Grape Quality Mapping for Vineyard Differential Harvesting. Brazilian Archives of Biology and Technology, 55(2), 193–204.

    Article  CAS  Google Scholar 

  • Sun, X. L., Zhao, Y. G., Wang, H. L., Yang, L., Qin, C. Z., Zhu, A. X., et al. (2012). Sensitivity of digital soil maps based on FCM to the fuzzy exponent and the number of clusters. Geoderma, 171–172, 24–34.

    Article  Google Scholar 

  • Tagarakis, A., Liakos, V., Fountas, S., Koundouras, S., & Gemtos, T. A. (2013). Management zones delineation using fuzzy clustering techniques in grapevines. Precision Agriculture, 14(1), 18–39.

    Article  Google Scholar 

  • Tisseyre, B., Mazzoni, C., & Fonta, H. (2008). Within-field temporal stability of some parameters in viticulture: Potential toward a site specific management. Journal International des Sciences de la Vigne et du Vin, 42(1), 27–39.

    Google Scholar 

  • Tisseyre, B., Ojeda, H., & Taylor, J. (2007). New technologies and methodologies for site-specific viticulture. Journal International des Sciences de la Vigne et du Vin, 41(2), 63–76.

    Google Scholar 

  • Trought, M. C. T., & Bramley, R. G. V. (2011). Vineyard variability in Marlborough, New Zealand: Characterising spatial and temporal changes in fruit composition and juice quality in the vineyard. Australian Journal of Grape and Wine Research, 17(1), 72–82.

    Article  Google Scholar 

  • Valdes, M. E., Moreno, D., Gamero, E., Uriarte, D., Prieto, M. D., Manzano, R., et al. (2009). Effects of cluster thinning and irrigation amount on water relations, growth, yield and fruit and wine composition of Tempranillo grapes in Extremadura (Spain). Journal International des Sciences de la Vigne et du Vin, 43(2), 67–76.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the Dpt. Innovación, Industria & Empleo of the Government of Navarra (MODELVID, Ref: IIM11879.RI.1), by the Centro para el Desarrollo Tecnológico Industrial-CDTI (Ref: IDI-20100729, co-funded by the European Union ERDF as part of the Operational Programme I+D+i Technology Fund 2007-2013) and by Fundación Fuentes Dutor. I.U. The Spanish Ministry of Education funded I.U. stage in SupAgro, Montpellier (EDU/2719/2011). The authors also would like to express their gratitude to the owners and staff in Bodegas Luis Cañas, particularly to M. José Aparicio and Olaya Fernandez, and to Rafael Álvarez (Verdtech Nuevo Campo) for their co-operation and interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. G. Santesteban.

Additional information

All the authors have contributed significantly and agree with the content of the manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Urretavizcaya, I., Santesteban, L.G., Tisseyre, B. et al. Oenological significance of vineyard management zones delineated using early grape sampling. Precision Agric 15, 111–129 (2014). https://doi.org/10.1007/s11119-013-9328-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-013-9328-3

Keywords

Navigation