Skip to main content
Log in

Optimized routing on agricultural fields by minimizing maneuvering and servicing time

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

Agricultural machines spend a significant part of their time on non-productive operations such as maneuvering near the boundaries of the field and loading or offloading of inputs or outputs (here referred to as servicing). This paper integrates existing methods for route optimization so as to minimize the time spent on turns and machine servicing on fields cultivated in straight rows. The following variables are optimized: (1) the orientation (angle) of the tracks, (2) the order of tracks, and (3) the types of turns between tracks. The angle of the tracks relative to field boundaries influences the number and lengths of the machine tracks, the number of turns and the positions where the machine can be serviced. Track order and the type of turns are selected to achieve overall efficiency. The algorithm was tested by computing routes for a set of fields of different sizes and assuming different operations. On small fields that do not require servicing, optimizing the turns between tracks resulted in a reduction of up to 50 % in turning time compared to the prevailing practice of navigation between adjacent tracks. A comparison of two sprayers in terms of servicing efficiency suggested that the algorithm can help selecting machinery for given field geometries. In some cases requiring machine servicing, the track orientation giving the shortest turning time did not produce the least servicing time. This illustrates that machine servicing should be taken into consideration for global optimization of machine traffic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • ASAE EP496.3 (2009). Agricultural machinery management. In ASABE STANDARD 2009 (Ed.), ASABE, vol. I (pp. 354–357). St. Joseph: American Society of Agricultural and Biological Engineers.

  • Bochtis, D., Oksanen, T. (2009). Combined coverage and path planning for field operations. Precision Agriculture, In: E. J. van Henten, D. Goense, C. Lokhorst (Eds.), Proceedings of the 7th European conference on precision agriculture (pp. 521–527). The Netherlands: Wageningen Academic Publishers.

  • Bochtis, D., & Vougioukas, S. (2008). Minimising the non-working distance travelled by machines operating in a headland field pattern. Biosystems Engineering, 101(1), 1–12.

    Article  Google Scholar 

  • Bochtis, D., Sorensen, C. G., Busato, P., Hameed, I. A., Rodias, E., Green, O., et al. (2010a). Tramline establishment in controlled traffic farming based on operational machinery cost. Biosystems Engineering, 107, 221–231.

    Article  Google Scholar 

  • Bochtis, D., Sorensen, C. G., Green, O., Moshou, D., & Olesen, J. (2010b). Effect of controlled traffic on field efficiency. Biosystems Engineering, 106, 14–25.

    Article  Google Scholar 

  • Bochtis, D., Sorensen, C. G., & Vougioukas, S. G. (2010c). Path planning for in-field navigation-aiding of service units. Computer and Electronics in Agriculture, 74, 80–90.

    Article  Google Scholar 

  • Bruin, S., Lerink, P., Klompe, A., van der Wal, T., & Heijting, S. (2009). Spatial optimisation of cropped swaths and field margins using GIS. Computers and Electronics in Agriculture, 68, 185–190.

    Article  Google Scholar 

  • Busato, P., Berruto, R., Saunders, C. (2007). Modeling of grain harvesting: Interaction between working pattern and field bin locations. Manuscript CIOSTA 07 001, IX. Agricultural Engineering International: the CIGR E-Journal. http://www.cigrjournal.org/index.php/Ejournal/article/view/949/943. Accessed 18 Oct 2012.

  • Cariou, C., Lenain, R., Thuilot, B., Martinet, P. (2010a). Autonomous maneuver of a farm vehicle with a trailed equipment: Motion planner and lateral-longitudinal controllers. 2010 IEEE International Conference on Robotics and Automation (ICRA). INSPEC Accession No. 11430926, 3819–3824.

  • Cariou, C., Lenain, R., Thuilot, B., Humbert, T., Berducat, M. (2010b). Maneuvers automation for agricultural vehicle in headland. AgEng 2010, International Conference on Agricultural Engineering, Clermont-Ferrand, FRA, 06/09/2010. Available in CemOA Publications—Publications scientifiques et techniques du Cemagref. http://cemadoc.irstea.fr/cemoa/pub00029257. Accessed 06 October 2012.

  • Clarke, G., & Wright, J. (1964). Scheduling of vehicles from a central depot to a number of delivery points. Operations Research, 12(4), 568–581.

    Article  Google Scholar 

  • Dillon, C. R., Shearer, S. A., Fulton, J., & Kanakasabai, M. (2003). Optimal path nutrient application using variable rate technology. In J. Stafford & A. Werner (Eds.), Proceedings of the 4th European conference on precision agriculture (pp. 171–176). The Netherlands: Wageningen Academic Publishers.

    Google Scholar 

  • Edwards, W. (2009). Estimating farm machinery costs. Machinery Management. Iowa State University. http://www.extension.iastate.edu/Publications/PM710.pdf. Accessed 2 March 2012.

  • Golden, B., Bodin, L., Doyle, T., & Stewart, J. R. W. (1980). Approximate traveling salesman algorithms. University of Maryland, College Park, Maryland. Operations Research, 28(3, Part 2), 694–711.

    Article  Google Scholar 

  • Hofstee, J. W., Spätjens, L. E. E. M., & Ijken, H. (2009). Optimal path planning for field operations. In E. J. van Henten, D. Goense, & C. Lokhorst (Eds.), Proceedings of the 7th European conference on precision agriculture (pp. 511–519). The Netherlands: Wageningen Academic Publishers.

    Google Scholar 

  • Jin, J., Tang, L. (2006). Optimal path planning for arable farming. Paper no 061158. St Joseph: ASABE.

  • Jin, J., Tang, L. (2010). Optimal coverage path planning for arable farming on 2d surfaces. Paper no 097274. St Joseph: ASABE.

  • Keicher, R., & Seufert, H. (2000). Automatic guidance for agricultural vehicles in Europe. Computers and Electronics in Agriculture, 25, 169–194.

    Article  Google Scholar 

  • Klemola, E., Karttunen, J., Kaila, E., Laaksonen, K., Kirkkari, A. (2002). Lohkon koon ja muodon taloudelliset vaikutukset [The economic effects of field size and shape]. TTS Institutes Publication Series: 386. Helsinki: TTS Institute (In Finnish).

  • Nagata, Y., & Soler, D. (2012). A new genetic algorithm for the asymmetric traveling salesman problem. Expert Systems with Applications, 39(10), 8947–8953.

    Article  Google Scholar 

  • Oksanen, T., Visala, A. (2007). Path planning algorithms for agricultural field machines. Dissertation, Helsinki University of Technology Automation Technology Laboratory Series A: Research Reports No. 31 Espoo, December 2007.

  • Palmer, R. J., Wild, D., & Runtz, K. (2003). Improving the efficiency of field operations. Biosystems Engineering, 84(3), 283–288.

    Article  Google Scholar 

  • Peltola, R., Mattila, P., Kasteenpohja, E. (2006). Pellon arvo [Value of agricultural land]. Maanmittauslaitoksen julkaisuja 102. http://www.maanmittauslaitos.fi/sites/default/files/Nro_102_pellon_arvo.pdf. Accessed 17 May 2012 (In Finnish).

  • Rego, C., Gamboa, D., Glover, F., & Osteman, C. (2011). Traveling salesman problem heuristics: Leading methods, implementations and latest advances. European Journal of Operational Research, 211(3), 427–441.

    Article  Google Scholar 

  • Taïx, M., Souères, P., Frayssinet, H., & Cordesses, L. (2006). Path planning for complete coverage with agricultural machines. In B. Siciliano, O. Khatib, & F. Groen (Eds.), Field and service robotics (pp. 549–558). Berlin: Springer.

    Chapter  Google Scholar 

  • Witney, B. (1996). Choosing and using farm machines. Edinburgh: Land Technology.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Spekken.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spekken, M., de Bruin, S. Optimized routing on agricultural fields by minimizing maneuvering and servicing time. Precision Agric 14, 224–244 (2013). https://doi.org/10.1007/s11119-012-9290-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-012-9290-5

Keywords

Navigation