Skip to main content
Log in

Evaluation of spectral indices and continuous wavelet analysis to quantify aphid infestation in wheat

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

Wheat aphid, Sitobion avenae F. is one of the most destructive insects infesting winter wheat and appears almost annually in northwest China. Past studies have demonstrated the potential of remote sensing for detecting crop diseases and insect damage. This study aimed to investigate the spectroscopic estimation of leaf aphid density by applying continuous wavelet analysis to the reflectance spectra (350–2 500 nm) of 60 winter wheat leaf samples. Continuous wavelet transform (CWT) was performed on each of the reflectance spectra to generate a wavelet power scalogram compiled as a function of wavelength location and scale of decomposition. Linear regression between the wavelet power and aphid density was to identify wavelet features (coefficients) that might be the most sensitive to aphid density. The results identified five wavelet features between 350 and 2 500 nm that provided strong correlations with leaf aphid density. Spectral indices commonly used to monitor crop stresses were also employed to estimate aphid density. Multivariate linear regression models based on six sensitivity spectral indices or five wavelet features were established to estimate aphid density. The results showed that the model with five wavelet features (R2 = 0.72, RMSE = 16.87) performed better than the model with six sensitivity spectral indices (R2 = 0.56, RMSE = 21.19), suggesting that the spectral features extracted through CWT might potentially reflect aphid density. The results also provided a new method for estimating aphid density using remote sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmed, N. E., Kanan, H. O., Inanaga, S., Ma, Y. Q., & Sugimoto, Y. (2001). Impact of pesticide seed treatments on aphid control and yield of wheat in the Sudan. Crop Protection, 20, 929–934.

    Article  CAS  Google Scholar 

  • Ayala-Silva, T., & Beyl, C. A. (2005). Changes in spectral reflectance of wheat leaves in response to specific macronutrient deficiency. Advances in Space Research, 35, 305–317.

    Article  PubMed  CAS  Google Scholar 

  • Blackburn, G. A. (2007). Wavelet decomposition of hyperspectral data: a novel approach to quantifying pigment concentrations in vegetation. International Journal of Remote Sensing, 28, 2831–2855.

    Article  Google Scholar 

  • Blackburn, G. A., & Ferwerda, J. G. (2008). Retrieval of chlorophyll concentration from leaf reflectance spectra using wavelet analysis. Remote Sensing of Environment, 112, 1614–1632.

    Article  Google Scholar 

  • Broge, N. H., & Leblanc, E. (2001). Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sensing of Environment, 76, 156–172.

    Article  Google Scholar 

  • Broge, N. H., & Mortensen, J. V. (2002). Deriving green crop area index and canopy chlorophyll density of winter wheat from spectral reflectance data. Remote Sensing of Environment, 81, 45–57.

    Article  Google Scholar 

  • Carter, G. A. (1991). Primary and secondary effects of water content on the spectral reflectance of leaves. American Journal of Botany, 78, 916–942.

    Article  Google Scholar 

  • Cheng, T., Rivard, B., & Sánchez-Azofeifa, A. (2011). Spectroscopic determination of leaf water content using continuous wavelet analysis. Remote Sensing of Environment, 115, 659–670.

    Article  Google Scholar 

  • Cheng, T., Rivard, B., Sánchez-Azofeifa, G. A., Feng, J., & Calvo-Polanco, M. (2010). Continuous wavelet analysis for the detection of green attack due to mountain pine beetle infestation. Remote Sensing of Environment, 114, 899–910.

    Article  Google Scholar 

  • Daughtry, C. S. T., Walthall, C. L., Kim, M. S., Brown de Colstoun, E., & McMurtrey, J. E. (2000). Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sensing of Environment, 74, 229–239.

    Article  Google Scholar 

  • Filella, I., Serrano, L., Serra, J., & Penuelas, J. (1995). Evaluating wheat nitrogen status with canopy reflectance indices and discriminant analysis. Crop Science, 35, 1400–1405.

    Article  Google Scholar 

  • Fluckiger, C. R., Kristinsson, H., Senn, R., Rindlisbacher, A., & Beholder, H. G. V. (1992). CGA-215944—a novel agent to control aphids and whiteflies. Proceedings of the Brighton Crop Protection Conference, British Crop Protection Council, Alton. pp 43–50.

  • Gamon, J. A., Serrano, L., & Surfus, J. S. (1997). The photochemical reflectance index: an optical indicator of photosynthetic radiation use efficiency across species, functional types and nutrient levels. Oecologia, 112, 492–501.

    Article  Google Scholar 

  • Gao, B. C. (1996). NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment, 58, 257–266.

    Article  Google Scholar 

  • Gitelson, A. A., Merzlyak, M. N., & Chivkunova, O. B. (2001). Optical properties and nondestructive estimation of anthocyanin content in plant leaves. Photochemistry and Photobiology, 74, 38–45.

    Article  PubMed  CAS  Google Scholar 

  • Gitelson, A. A., Zur, Y., Chivkunova, O. B., & Merzlyak, M. N. (2002). Assessing carotenoid content in plant leaves with reflectance spectroscopy. Photochemistry and Photobiology, 75, 272–281.

    Article  PubMed  CAS  Google Scholar 

  • Graeff, S., & Claupein, W. (2007). Identification and discrimination of water stress in wheat leaves (Triticum aestivum L.) by means of reflectance measurements. Irrigation Science, 26, 61–70.

    Article  Google Scholar 

  • Halbert, S. E., Connelly, B. J., Bishop, G. W., & Blackmer, J. L. (1992). Transmission of barley yellow dwarf virus by field collected aphids (Homoptera: Aphididae) and their relative importance in barley yellow dwarf epidemiology in southwestern Idaho. Annals of Applied Biology, 121, 105–121.

    Article  Google Scholar 

  • Higley, L. G., & Pedigo, L. P. (1993). Economic injury level concepts and their use in sustaining environmental quality. Agriculture, Ecosystems & Environment, 46, 233–243.

    Article  Google Scholar 

  • Jacquemoud, S., Ustin, S. L., Verdebout, J., Schmuck, G., Andreoli, G., & Hosgood, B. (1996). Estimating leaf biochemistry using the prospect leaf optical properties model. Remote Sensing of Environment, 56, 194–202.

    Article  Google Scholar 

  • Larsson, H. (2005). A crop loss model and economic thresholds for the grain aphid, Sitobion avenae (F.), in winter wheat in southern Sweden. Crop Protection, 24, 397–405.

    Article  Google Scholar 

  • Luo, J. H., Huang, M. Y., Zhao, J. L., Huang, W. J., & Zhang, J. C. (2011). Spectrum characteristics of winter wheat infected by aphid in filling stage. Transactions of the Chinese Society of Agriculture Engineering, 27, 215–219. (in Chineses).

    Google Scholar 

  • Lyda, S. D., & Burnett, E. (1970). Influence of benzimidazole fungicides on phymatotrichum omnivorum and phymatotrichum root rot of cotton. Phytopathology, 60, 726–728.

    Article  CAS  Google Scholar 

  • Mallat, S. (1991). Zero-crossings of a wavelet transform. IEEE Transactions on Information Theory, 37, 1019–1033.

    Article  Google Scholar 

  • Merzlyak, M. N., Gitelson, A. A., Chivkunova, O. B., & Rakitin, V. Y. (1999). Non-destructive optical detection of leaf senescence and fruit ripening. Physiology Plantarum, 106, 135–141.

    Article  CAS  Google Scholar 

  • Mirik, M., Michels, G. J., Kassymzhanova-Mirik, S., & Elliott, N. C. (2006a). Spectral sensing of aphid (Hemiptera: Aphididae) density using field spectrometry and radiometry. Turkish Journal of Agriculture and Forestry, 30, 421–428.

    Google Scholar 

  • Mirik, M., Michels, G. J, Jr, Kassymzhanova-Mirik, S., & Elliott, N. C. (2007). Reflectance characteristics of Russian wheat aphid (Hemiptera: Aphididae) stress and abundance in winter wheat. Computers and Electronics in Agriculture, 57, 123–134.

    Article  Google Scholar 

  • Mirik, M., Michels, G. J, Jr, Kassymzhanova-Mirik, S., Elliott, N. C., Catana, V., Jones, D. B., et al. (2006b). Using digital image analysis and spectral reflectance data to quantify damage by greenbug (Hemiptera: Aphididae) in winter wheat. Computers and Electronics in Agriculture, 5, 86–98.

    Article  Google Scholar 

  • Muraki, S. (1995). Multiscale volume representation by a DOG wavelet. IEEE Transactions on Visualization and Computer Graphics, 1, 109–116.

    Article  Google Scholar 

  • Peñuelas, J., & Inoue, Y. (1999). Reflectance indices indicative of changes in water and pigment contents of peanut and wheat leaves. Photosynthetica, 36, 355–360.

    Article  Google Scholar 

  • Pike, K. S., Reed, G. L., Graf, G. T., & Allison, D. (1993). Compatibility of imidacloprid with fungicides as a seed-treatment control of Russian wheat aphid and effect on germination, growth, and yield of wheat and barley. Journal of Economic Entomology, 86, 586–593.

    CAS  Google Scholar 

  • Pimentel, D. (1995). Amounts of pesticides reaching target pests: environmental impacts and ethics. Journal of Agricultural and Environmental Ethics, 8, 17–29.

    Article  Google Scholar 

  • Rabbinge, R., Drees, E. M., Verberne, F. C. M., & Wesselo, A. (1981). Damage effects of cereal aphids in wheat. European Journal of Plant Pathology, 87, 217–232.

    Google Scholar 

  • Riedell, W. E., & Blackmer, T. M. (1999). Leaf reflectance spectra of cereal aphid-damaged wheat. Crop Science, 39, 1835–1840.

    Article  Google Scholar 

  • Rivard, B., Feng, J., Gallie, A., & Sanchez-Azofeifa, A. (2008). Continuous wavelets for the improved use of spectral libraries and hyperspectral data. Remote Sensing of Environment, 112, 2850–2862.

    Article  Google Scholar 

  • Rush, C. M., & Lyda, S. D. (1982). The effects of anhydrous ammonia on membrane stability of phymatotrichum omnivorum. Mycopathologia, 79, 147–152.

    Article  CAS  Google Scholar 

  • Shaoyou, L., Stoltz, R. L., & Xinzhi, N. (1986). Damage to wheat by Macrosiphum avenae (F.) (Homoptera: Aphididae) in northwest China. Journal of Economic Entomology, 79, 1688–1691.

    Google Scholar 

  • Sims, D. A., & Gamon, J. A. (2002). Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sensing of Environment, 81, 337–354.

    Article  Google Scholar 

  • Thenkabail, P. S., Smith, R. B., & Pauw, E. D. (2000). Hyperspectral vegetation indices and their relationships with agricultural crop characteristics. Remote Sensing of Environment, 71, 158–182.

    Article  Google Scholar 

  • Torrence, C., & Compo, G. P. (1998). A practical guide to wavelet analysis. Bulletin of the American Meteorological Society, 79, 61–78.

    Article  Google Scholar 

  • Whitson, R. S., & Hine, R. B. (1986). Activity of propiconazole and other sterol-inhibiting fungicides against phymatotrichum omnivorum. Plant Disease, 70, 130–133.

    Article  CAS  Google Scholar 

  • Yang, Z., Rao, M. N., Elliott, N. C., Kindler, S. D., & Popham, T. W. (2005). Using ground-based multispectral radiometry to detect stress in wheat caused by greenbug (Homoptera: Aphididae) infestation. Computers and Electronics in Agriculture, 47, 121–135.

    Article  Google Scholar 

  • Yang, Z., Rao, M. N., Elliott, N. C., Kindler, S. D., & Popham, T. W. (2009). Differentiating stress induced by greenbugs and Russian wheat aphid in wheat using remote sensing. Computers and Electronics in Agriculture, 67, 64–70.

    Article  Google Scholar 

  • Zhang, M., Qin, Z., Liu, X., & Ustin, S. (2003). Detection of stress in tomatoes induced by late blight disease in California, USA, using hyperspectral remote sensing. International Journal of Applied Earth Observation and Geoinformation, 4, 295–310.

    Article  Google Scholar 

Download references

Acknowledgments

This work was subsidized by Hundred Talent Program of the Chinese Academy of Sciences of Wenjiang Huang, Beijing Municipal Natural Science Foundation (4122032), National Natural Science Foundation of China (41101395), National Key Technology R&D Program (2012BAH29B02). The authors are grateful to Mr. Weiguo Li, and Mrs. Hong Chang for data collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjiang Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, J., Huang, W., Yuan, L. et al. Evaluation of spectral indices and continuous wavelet analysis to quantify aphid infestation in wheat. Precision Agric 14, 151–161 (2013). https://doi.org/10.1007/s11119-012-9283-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-012-9283-4

Keywords

Navigation