Skip to main content
Log in

Use of aerial thermal imaging to estimate water status of palm trees

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

A methodology to estimate water status of palm trees from aerial thermal images was developed. Deficit irrigation of 80% in three drip-irrigated date-palm plots in the northern Dead Sea region was manipulated during the winter of 2007 and 2008. An uncooled thermal camera was used for extensive aerial imaging to detect palm trees and pure-canopy pixels by using only aerial thermal images. An automatic procedure, based on watershed segmentation analysis, was developed which enabled detection of all palm trees in the thermal images. Two new methods were developed to select palm trees and pure pixels within them: basin-based and pixel-based. From the temperatures of pure-canopy pixels, significant differences were found between palm trees under commercial and deficit irrigation regimes, in all three plots. Automated detection of canopy, based on aerial thermal images, is a key step towards commercial mapping of within-plot water-status variability. A protocol, based on the developed methodology, was suggested for mapping water status variability in a palm plot, and for irrigation scheduling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Al-Amoud, A. I. (2006). Date palm response to subsurface drip irrigation. Paper No. CSBE06204, Canadian Society for Bioengineering, Winnipeg, Canada.

  • Al-Amoud, A. I., Bacha, M. A., & Al-Darby, A. M. (2000). Seasonal water use of date palms in central region of Saudi Arabia. Agricultural Engineering Journal, 9, 51–62.

    Google Scholar 

  • Alazba, A. (2004). Estimating palm water requirements using Penman-Monteith mathematical model. Journal of King Saud University, 16, 137–152.

    Google Scholar 

  • Alchanatis, V., Cohen, Y., Cohen, S., Möller, M., Sprinstin, M., Meron, M., et al. (2010). Evaluation of different approaches for estimating and mapping crop water status in cotton with thermal imaging. Precision Agriculture, 11, 27–41.

    Article  Google Scholar 

  • Berni, J. A. J., Zarco-Tejada, P. J., Sepulcre-Canto, G., Fereres, E., & Villalobos, F. (2009). Mapping canopy conductance and CWSI in olive orchards using high resolution thermal remote sensing imagery. Remote Sensing of Environment, 113, 2380–2388.

    Article  Google Scholar 

  • Bernstein, Z. (2004). The date palm. Tel Aviv: Israel Fruit Board. (in Hebrew).

    Google Scholar 

  • Chao, C. T., & Krueger, R. R. (2007). The date palm (Phoenix dactylifera L.): Overview of biology, uses, and cultivation. HortScience, 42, 1077–1082.

    Google Scholar 

  • Cohen, Y., Alchanatis, V., Meron, M., & Saranga, Y. (2005). Estimation of leaf water potential by thermal imagery and spatial analysis. International Journal of Experimental Botany, 56, 1843–1852.

    Article  CAS  Google Scholar 

  • Cohen, Y., Freeman, S., Zveibil, A., Ben Zvi, R., Nakashe, Y., Biton, S., et al. (2010). Reevaluation of factors affecting bunch drop in date palm. HortScience, 45, 887–893.

    Google Scholar 

  • Digabel, H., & Lantuejoul, C. (1978). Iterative algorithms. In J. L. Chermant (Ed.), Actes du second symposium europeen d’analyse quantitative des microstructures en sciences des materiaux, biologie et medecine (pp. 85–99). Stuttgart: Riederer Verlag.

    Google Scholar 

  • Ehrler, W. L. (1973). Cotton leaf temperatures as related to soil water depletion and meteorological factors. Agronomy Journal, 65, 404–409.

    Article  Google Scholar 

  • Evans, D. E., Sadler, E. J., Camp, C. R., & Millen, J. A. (2000). Spatial canopy temperature measurements using central pivot mounted IRTs. In P. C. Robert, R. H. Rust, W. E. Larsen (Eds.), Proceedings of the 5th international conference on precision agriculture, ASA-CSSA-SSSA, Madison, WI, USA. CD-ROM.

  • Fuchs, M. (1990). Infrared measurement of canopy temperature and detection of plant water stress. Theoretical and Applied Climatology, 42, 253–261.

    Article  Google Scholar 

  • Fuchs, M., & Tanner, C. B. (1966). Infrared thermometry of vegetation. Agronomy Journal, 58, 597–601.

    Article  Google Scholar 

  • Gates, D. M. (1964). Leaf temperature and transpiration. Agronomy Journal, 56, 273–277.

    Article  Google Scholar 

  • Grant, O. M., Tronina, L., Jones, H. G., & Chaves, M. M. (2007). Exploring thermal imaging variables for the detection of stress responses in grapevine under different irrigation regimes. Journal of Experimental Botany, 58, 815–825.

    Article  PubMed  CAS  Google Scholar 

  • Idso, S. B., Jackson, R. D., Pinter, P. J., Reginato, R. J., & Hatfield, J. L. (1981). Normalizing the stress-degree-day parameter for environmental variability. Agricultural Meteorology, 24, 45–55.

    Article  Google Scholar 

  • Jackson, R. D., Idso, S. B., Reginato, R. J., & Pinter, P. J. (1981). Canopy temperature as a crop water stress indicator. Water Resources Research, 17, 1133–1138.

    Article  Google Scholar 

  • Jones, H. G. (1992). Plants and microclimate (2nd ed., pp. 231–236). Cambridge: Cambridge University Press.

    Google Scholar 

  • Karantzalos, K., & Argialas, D. (2006). Improving edge detection and watershed segmentation with anisotropic diffusion and morphological levelings. International Journal of Remote Sensing, 27, 5427–5434.

    Article  Google Scholar 

  • Kramer, S., Kurt, M., Yanai, I., & Cohen, Y. (2008). Irrigation of date palms (Medjool) in Hazeva—periodical report 2003–2008. Summary of the 2008 research season in the north and central Arava region, Israel. Publications of the R&D North and Central Arava region, Israel (in Hebrew). Accessed April 8, 2011, from http://www.arava.co.il/cgi-webaxy/sal/sal.pl?lang=he&ID=546999_arava&username=public&password=222594&my_name=&my_email=&guest_data=%20<D>%20&act=view&dbid=files&dataid=790&fid=f6&name=Irrigation%20dates%202003%202008.pdf.

  • Liebenberg, P. J., & Zaid, A. (1999). Date palm irrigation. In A. Zaid (Ed.), Date palm cultivation. Plant production and protection paper 156 (pp. 130–143). Rome: FAO.

    Google Scholar 

  • Madurapperuma, W. S., Bleby, T. M., & Burgess, S. S. O. (2009). Evaluation of sap flow methods to determine water use by cultivated palms. Environmental and Experimental Botany, 66, 372–380.

    Article  Google Scholar 

  • Meron, M., Tsipris, J., Orlov, V., Alchanatis, V., & Cohen, Y. (2010). Crop water stress mapping for site-specific irrigation by thermal imagery and artificial reference surfaces. Precision Agriculture, 11, 148–162.

    Article  Google Scholar 

  • Moran, M. S., Clarke, T. R., Inoue, Y., & Vidal, A. (1994). Estimating crop water deficit using the relation between surface-air temperature and spectral vegetation index. Remote Sensing of the Environment, 49, 246–263.

    Article  Google Scholar 

  • Nadler, A., Raveh, E., Yermiyahu, U., Kado, M., Nasser, A., Barak, M., et al. (2008). Detecting water stress in trees using stem electrical conductivity measurements. Journal of the Soil Science Society of America, 72, 1014–1024.

    Article  CAS  Google Scholar 

  • Otsu, N. (1979). Threshold selection method from gray-level histograms. IEEE Transactions on Systems Man and Cybernetics, 9, 62–66.

    Article  Google Scholar 

  • Safren, O., Alchanatis, V., Ostrovsky, V., & Levi, O. (2007). Detection of green apples in hyperspectral images of apple-tree foliage using machine vision. Transactions of the ASABE, 50, 2303–2313.

    Google Scholar 

  • Sela, E., Cohen, Y., Alchanatis, V., Saranga, Y., Cohen, S., Möller, M., Meron, M., Bosak, A., Tsipris, J., & Orolov, V. (2007). Thermal imaging for estimating and mapping crop water stress in cotton. In J. V. Stafford (Ed.), Proceedings of the 6th European conference on precision agriculture (pp. 365–371). Wageningen: Wageningen Academic Publishers.

  • Sellami, M. H., & Sifaoui, M. S. (2003). Estimating transpiration in an intercropping system measuring sap flow inside the oasis. Agricultural Water Management, 59, 191–204.

    Article  Google Scholar 

  • Serra, J. (1982). Image analysis and mathematical morphology. New York: Academic Press.

    Google Scholar 

  • Tanner, C. B. (1963). Plant temperatures. Agronomy Journal, 55, 210–211.

    Article  Google Scholar 

  • Tilling, A. K., O’Leary, G. J., Ferwerda, J. G., Jones, S. D., Fitzgerald, G. J., Rodriguez, D., et al. (2007). Remote sensing of nitrogen and water stress in wheat. Field Crops Research, 104, 77–85.

    Article  Google Scholar 

  • Tripler, E., Ben-Gal, A., & Shani, U. (2007). Consequence of salinity and excess boron on growth, evapotranspiration and ion uptake in date palm (Phoenix dactylifera L., cv. Medjool). Plant and Soil, 297, 147–155.

    Article  CAS  Google Scholar 

  • Zaid, A., & De Wet, P. F. (1999). Origin, geographical distribution and nutritional values of date palm. In A. Zaid (Ed.), Date palm cultivation (pp. 29–44). Rome: FAO.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Cohen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cohen, Y., Alchanatis, V., Prigojin, A. et al. Use of aerial thermal imaging to estimate water status of palm trees. Precision Agric 13, 123–140 (2012). https://doi.org/10.1007/s11119-011-9232-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-011-9232-7

Keywords

Navigation