Skip to main content
Log in

Estimating soil organic carbon from soil reflectance: a review

  • REVIEW PAPER
  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

Soil organic carbon (SOC) concentration is a useful soil property with which to guide agricultural applications of chemical inputs. To enable this, simple, accurate, rapid and inexpensive methods are needed to produce maps of surface SOC concentrations. Researchers have investigated estimates of soil surface properties from remotely sensed information as a means of rapidly quantifying and monitoring some surface soil properties, such as SOC. The objective of this paper is to review the potential and limitations of remotely sensed data for mapping and evaluating SOC. Several statistical methods including simple regression models, the ‘soil line’ approach, principal component analysis and geostatistics have been applied to data to investigate the accuracy of such estimates. A review of the literature shows that predictive equations are not universal and require new regression models for every scene. An important benefit of remotely sensed data is to suggest a sampling strategy that can lead to improved representation of spatial heterogeneity in SOC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adamchuk, V. I., Hummel, J. W., Morgan, M. T., & Upadhyaya, S. K. (2004). On-the-go soil sensors for precision agriculture. Computers and Electronics in Agriculture, 44, 71–91. doi:10.1016/j.compag.2004.03.002.

    Google Scholar 

  • Agbu, P. A., Fehrenbacher, D. J., & Jansen, I. I. (1990). Soil property relationships with SPOT satellite digital data in East Central Illinois. Soil Science Society of America Journal, 54, 807–812.

    Google Scholar 

  • Al-Abbas, A. H., Swain, P. H., & Baumgardner, M. F. (1972). Relating organic matter and clay content to the multispectral radiance of soils. Soil Science, 114, 477–485. doi:10.1097/00010694-197212000-00011.

    Google Scholar 

  • Alexander, J. D. (1969). A color chart for organic matter. Crops Soils, 21, 15–17.

    Google Scholar 

  • Al-Kaisi, M. M., Yin, X. H., & Licht, M. A. (2005). Soil carbon and nitrogen changes as influenced by tillage and cropping systems in some Iowa soils. Agriculture, Ecosystems & Environment, 105, 635–647. doi:10.1016/j.agee.2004.08.002.

    CAS  Google Scholar 

  • Bajwa, S. G., Tian, L., Bullock, D., Sudduth, K., Kitchen, N., & Palm, H. (2001). Soil characterization in agricultural fields using hyperspectral image data. American society of agricultural and biological engineers annual international meeting, California, USA. http://asae.frymulti.com/abstract.asp/aid=3441&t=2. Accessed Feb. 15 2007.

  • Baret, F., & Guyot, G. (1991). Potentials and limitations of vegetation indices for LAI and APAR assessment. Remote Sensing of Environment, 35, 161–173. doi:10.1016/0034-4257(91)90009-U.

    Google Scholar 

  • Baret, F., Jacquemond, S., & Hanocq, J. F. (1993). The soil line concept in remote sensing. Remote Sensing Reviews, 7, 65–82.

    Google Scholar 

  • Bateson, A., & Curtiss, B. (1996). A method for manual endmember selection and spectral unmixing. Remote Sensing of Environment, 55, 229–243. doi:10.1016/S0034-4257(95)00177-8.

    Google Scholar 

  • Baumgardner, M. F., Kristof, S. J., Johansen, C. J., & Zachary, A. L. (1970). Effect of organic matter in the multispectral properties of soils. Proceedings of the Indiana Academy of Science, 79, 413–422.

    Google Scholar 

  • Ben-Dor, E., & Banin, A. (1995). Near-infrared analysis as a rapid method to simultaneously evaluate several soil properties. Soil Science Society of America Journal, 59, 364–372.

    CAS  Google Scholar 

  • Ben-Dor, E., Inbar, Y., & Chen, Y. (1997). The reflectance spectra of organic matter in the visible near-infrared and short-wave infrared region (400–2500 nm) during a controlled decomposition process. Remote Sensing of Environment, 61, 1–15. doi:10.1016/S0034-4257(96)00120-4.

    Google Scholar 

  • Bishop, T. F. A., & McBratney, A. B. (2002). Creating field extent digital elevation models for precision agriculture. Precision Agriculture, 3, 37–46. doi:10.1023/A:1013322103518.

    Google Scholar 

  • Blackmer, A. M., & White, S. E. (1998). Using precision farming technologies to improve management of soil and fertilizer nitrogen. Australian Journal of Agricultural Research, 49, 555–564. doi:10.1071/A97073.

    Google Scholar 

  • Bowers, S. A., & Hanks, R. J. (1965). Reflection of radiant energy from soils. Soil Science, 100, 130–138. doi:10.1097/00010694-196508000-00009.

    Google Scholar 

  • Brown, D. J., Shepherd, K. D., Walsh, M. G., Dewayne Mays, M., & Reinsch, T. G. (2006). Global soil characterization with VNIR diffuse reflectance spectroscopy. Geoderma, 132, 273–290. doi:10.1016/j.geoderma.2005.04.025.

    CAS  Google Scholar 

  • Campbell, J. B. (2006). Introduction to remote sensing (4th ed.). New York, USA: Guilford Press.

    Google Scholar 

  • Chang, C. W., & Laird, D. A. (2002). Near-infrared reflectance spectroscopic analysis of soil C and N. Soil Science, 167, 110–116. doi:10.1097/00010694-200202000-00003.

    CAS  Google Scholar 

  • Chen, F., Kissell, D. E., West, L. T., & Adkins, W. (2000). Field-scale mapping of surface soil organic carbon using remotely sensed imagery. Soil Science Society of America Journal, 64, 746–753.

    Article  CAS  Google Scholar 

  • Chen, F., Kissel, D. E., West, L. T., Rickman, D., Luvall, J. C., & Adkins, W. (2005). Mapping surface soil organic carbon for crop fields with remote sensing. Journal of Soil and Water Conservation, 60, 51–57.

    Google Scholar 

  • Clark, R. N., & Roush, T. L. (1984). Reflectance spectroscopy quantitative analysis techniques for remote sensing applications. Journal of Geophysical Research, 89, 6329–6340. doi:10.1029/JB089iB07p06329.

    CAS  Google Scholar 

  • Clark, R. N., King, T. V. V., Klejwa, M., Swayze, G. A., & Vergo, N. (1990). High spectral resolution reflectance spectroscopy of minerals. Journal of Geophysical Research, 95, 12653–12680. doi:10.1029/JB095iB08p12653.

    Google Scholar 

  • Crist, E. P., & Cicone, R. C. (1984). Application of the tasseled cap concept to simulated thematic mapper data. Photogrammetric Engineering & Remote Sensing, 50, 343–352.

    Google Scholar 

  • Curran, P. J. (1983). Estimating green LAI from multispectral aerial photography. Photogrammetric Engineering & Remote Sensing, 49, 1709–1720.

    Google Scholar 

  • Dalal, R. C., & Henry, R. J. (1986). Simultaneous determination of moisture, organic carbon and total nitrogen by near infrared reflectance spectrophotometry. Soil Science Society of America Journal, 50, 120–123.

    Article  CAS  Google Scholar 

  • Daniel, K. W., Tripathi, N. K., & Honda, K. (2003). Artificial neuralnetwork analysis of laboratory and in situ spectra for the estimation of macronutrients in soils of Lop Buri (Thailand). Australian Journal of Soil Research, 41, 47–59. doi:10.1071/SR02027.

    CAS  Google Scholar 

  • Daniel, K. W., Tripathi, N. K., Honda, K., & Apisit, E. (2004). Analysis of VNIR (400–1100 nm) spectral signatures for estimation of soil organic matter in tropical soils of Thailand. International Journal of Remote Sensing, 25, 643–652. doi:10.1080/0143116031000139944.

    Google Scholar 

  • Dick, R. P. (1992). A review: Long-term effects of agricultural systems on soil biochemical and microbial parameters. Agriculture, Ecosystems & Environment, 40, 25–36. doi:10.1016/0167-8809(92)90081-L.

    CAS  Google Scholar 

  • Dunn, B. W., Beecher, H. G., Batten, G. D., & Ciavarella, S. (2002). The potential of near-infrared reflectance spectroscopy for soil analysis—a case study from the riverine plain of south-eastern Australia. Australian Journal of Experimental Agriculture, 42, 607–614. doi:10.1071/EA01172.

    Google Scholar 

  • Dwivedi, R. S. (2001). Soil resources mapping: A remote sensing perspective. Remote Sensing Reviews, 20, 89–122.

    Google Scholar 

  • Ehsani, M. R., Upadhyaya, S. K., & Slaughter, D. (1999). A NIR technique for rapid determination of soil mineral nitrogen. Precision Agriculture, 1, 217–234. doi:10.1023/A:1009916108990.

    Google Scholar 

  • Ferguson, R. B., Gotway, C. A., Hergert, G. W., & Peterson, T. A. (1996). Soil sampling for site-specific nitrogen management. In P. C. Robert, R. H. Rust, & W. E. Larson (Eds.), Precision agriculture 1996: Proceedings of the third international conference on precision agriculture (pp. 13–22). Madison, USA: American Society of Agronomy, Crop Science Society of America, Soil Science Society of America.

    Google Scholar 

  • Fleming, K. L., Westfall, D. G., Wiens, D. W., & Brodahl, M. C. (2000). Evaluating farmer defined management zone maps for variable rate fertilizer application. Precision Agriculture, 2, 201–215. doi:10.1023/A:1011481832064.

    Google Scholar 

  • Fox, G. A., & Metla, R. (2005). Soil property analysis using principal components analysis, soil line, and regression models. Soil Science Society of America Journal, 69, 1782–1788. doi:10.2136/sssaj2004.0362.

    CAS  Google Scholar 

  • Fox, G. A., & Sabbagh, G. J. (2002). Estimation of soil organic matter from red and near-infrared remotely sensed data using a soil line Euclidean distance technique. Soil Science Society of America Journal, 66, 1922–1929.

    Article  CAS  Google Scholar 

  • Fox, G. A., Sabbagh, G. J., Searcy, S. W., & Yang, C. (2004). An automated soil line identification routine for remotely sensed images. Soil Science Society of America Journal, 68, 1326–1331.

    Article  CAS  Google Scholar 

  • Francis, D. D., & Schepers, J. S. (1997). Selective soil sampling for site-specific nutrient management. In J. V. Stafford (Ed.), Precision agriculture ‘97: Proceedings of the first European conference on precision agriculture (pp. 119–126). Oxford, UK: BIOS Scientific Publishers.

    Google Scholar 

  • Franzen, D. W., Halvorson, A. D., & Hofman, V. L. (2000). Management zones for soil N and P levels in the Northern Great Plains. In P. C. Robert, R. H. Rust, & W. E. Larson (Eds.), Precision agriculture 2000: Proceedings of the 5th international conference on precision agriculture. Madison, USA: CD-ROM computer file.

    Google Scholar 

  • Full, W. E., Ehrlich, R., & Bezdek, J. C. (1982). Fuzzy Q model—a new model approach for linear unmixing. Mathematical Geology, 14, 259–270. doi:10.1007/BF01032888.

    Google Scholar 

  • Galvao, L. S., & Vitorello, I. (1998). Role of organic matter in obliterating the effects of iron on spectral reflectance and colour of Brazilian tropical soils. International Journal of Remote Sensing, 19, 1969–1979. doi:10.1080/014311698215090.

    Google Scholar 

  • Galvao, L. S., Vitorello, I., & Formaggio, A. R. (1997). Relationships of spectral reflectance and color among surface and subsurface horizons of tropical soil profiles. Remote Sensing of Environment, 61, 24–33. doi:10.1016/S0034-4257(96)00219-2.

    Google Scholar 

  • Galvao, L. S., Pizarro, M. A., & Epiphanio, J. C. N. (2001). Variations in reflectance of tropical soils: Spectral-chemical composition relationships from AVIRIS data. Remote Sensing of Environment, 75, 245–255. doi:10.1016/S0034-4257(00)00170-X.

    Google Scholar 

  • Goovaerts, P. (1997). Geostatistics for natural resources evaluation. New York, USA: Oxford University Press.

    Google Scholar 

  • Goovaerts, P. (1999). Using elevation to aid the geostatistical mapping of rainfall erosivity. Catena, 34, 227–242. doi:10.1016/S0341-8162(98)00116-7.

    Google Scholar 

  • Gotway, C. A., Ferguson, R. B., Hergert, G. W., & Peterson, T. A. (1996). A comparison of kriging and inverse-distance methods for mapping soil parameters. Soil Science Society of America Journal, 60, 1237–1247.

    Article  CAS  Google Scholar 

  • Graff, C. D., Koskinen, W. C., Anderson, J., Halbach, T. R., & Dowdy, R. H. (2000). Characterization of spatial variability ofsoil properties in a watershed that affect herbicide behavior. In P. C. Robert, R. H. Rust, & W. E. Larson (Eds.), Precision agriculture 2000: Proceedings of the 5th international conference on precision agriculture (p. 20). CD-ROM computer file: Madison, USA.

    Google Scholar 

  • Hanquet, B., Sirjacobs, D., Destain, M. F., Frankinet, M., & Verbrugge, J. C. (2004). Analysis of soil variability measured with a soil strength sensor. Precision Agriculture, 5, 227–246. doi:10.1023/B:PRAG.0000032763.54104.b4.

    Google Scholar 

  • Henderson, T. L., Baumgardner, M. F., Franzmeier, D. P., Stott, D. E., & Coster, D. C. (1992). High dimensional reflectance analysis of soil organic matter. Soil Science Society of America Journal, 56, 865–872.

    Article  CAS  Google Scholar 

  • Hengl, T., Heuvelink, G. B. M., & Stein, A. (2004). A generic framework for spatial prediction of soil variables based on regression kriging. Geoderma, 120, 75–93. doi:10.1016/j.geoderma.2003.08.018.

    Google Scholar 

  • Hevesi, J. A., Istok, D. J., & Flint, A. L. (1992). Precipitation estimation in mountainous terrain using multivariate geostatistics. Journal of Applied Meteorology, 31, 661–676. doi:10.1175/1520-0450(1992)031<0661:PEIMTU>2.0.CO;2.

    Google Scholar 

  • Huang, B., Sun, W., Zhao, Y., Zhu, J., Yang, R., Zou, Z., et al. (2007). Temporal and spatial variability of soil organic matter and total nitrogen in an agricultural ecosystem as affected by farming practices. Geoderma, 139, 336–345. doi:10.1016/j.geoderma.2007.02.012.

    CAS  Google Scholar 

  • Huete, A. R., & Escadafal, R. (1991). Assessment of biophysical soil properties through spectral decomposition techniques. Remote Sensing of Environment, 35, 149–157. doi:10.1016/0034-4257(91)90008-T.

    Google Scholar 

  • Hummel, J. W., Sudduth, K. A., & Hollinger, S. E. (2001). Soil moisture and organic matter prediction of surface and subsurface soils using an NIR soil sensor. Computers and Electronics in Agriculture, 32, 149–165. doi:10.1016/S0168-1699(01)00163-6.

    Google Scholar 

  • Hunt, G. R., & Salisbury, J. W. (1970). Visible and near infrared spectra of minerals and rocks: I: Silicate minerals. Modern Geology, 1, 283–300.

    CAS  Google Scholar 

  • Ishida, T., & Ando, H. (1999). Use of disjunctive cokriging to estimate soil organic matter from landsat thematic mapper image. International Journal of Remote Sensing, 20, 1549–1565. doi:10.1080/014311699212605.

    Google Scholar 

  • Islam, K., Singh, B., & McBratney, A. B. (2003). Simultaneous estimation of various soil properties by ultra-violet, visible and near-infrared reflectance spectroscopy. Australian Journal of Soil Research, 41, 1101–1114. doi:10.1071/SR02137.

    CAS  Google Scholar 

  • Janik, L. J., Skjemstad, J. O., & Raven, M. D. (1995). Characterization and analysis of soils using mid infrared partial least-squares. I. Correlations with XRF-determined major-element composition. Australian Journal of Soil Research, 33, 621–636. doi:10.1071/SR9950621.

    CAS  Google Scholar 

  • Janik, L. J., Merry, R. H., & Skjemstad, J. O. (1998). Can mid infra-red diffuse reflectance analysis replace soil extractions? Australian Journal of Experimental Agriculture, 38, 681–696. doi:10.1071/EA97144.

    Google Scholar 

  • Jasinski, M. F., & Eagleson, P. S. (1989). The structure of red-infrared scattergrams of semivegetated landscapes. IEEE Transactions on Geoscience & Remote Sensing, 27, 441–451. doi:10.1109/36.29564.

    Google Scholar 

  • Jensen, J. R. (1996). Introductory digital image processing: A remote sensing perspective. Upper Saddle River, USA: Prentice Hall.

    Google Scholar 

  • Kerry, R., & Oliver, M. (2003). Variograms of ancillary data to aid sampling for soil surveys. Precision Agriculture, 4, 261–278. doi:10.1023/A:1024952406744.

    Google Scholar 

  • Khakural, B. R., Robert, P. C., & Huggins, D. R. (1999). Variability of corn/soybean yield and soil/landscape properties across a southwestern Minnesota landscape. In P. C. Robert, R. H. Rust, & W. E. Larson (Eds.), Precision agriculture 1999: Proceedings of the 4th international conference on precision agriculture (pp. 573–579). Madison, USA: American Society of Agronomy, Crop Science Society of America, Soil Science Society of America.

    Google Scholar 

  • Kirby, M. (2001). Geometric data analysis: An empirical approach to dimensionality reduction and the study of patterns. New York, USA: Wiley.

    Google Scholar 

  • Krishnan, P., Alexander, J. D., Butler, B. J., & Hummel, J. W. (1980). Reflectance technique for predicting soil organic matter. Soil Science Society of America Journal, 44, 1282–1285.

    Article  Google Scholar 

  • Lambert, D., Lowenberg-DeBoer, J., & Bongiovanni, R. (2002). Spatial regression, an alternative statistical analysis for landscape scale on-farm trials: Case study of variable rate nitrogen application in Argentina. In P. C. Robert, R. H. Rust, & W. E. Larson (Eds.), Precision agriculture 2002: Proceedings of the 6th international conference on precision agriculture. Madison, USA: American Society of Agronomy Miscellaneous Publication.

    Google Scholar 

  • Laslett, G. M., McBratney, A. B., Pahl, P. J., & Hutchinson, M. F. (1987). Comparison of several spatial prediction methods for soil pH. Soil Science, 38, 325–341. doi:10.1111/j.1365-2389.1987.tb02148.x.

    CAS  Google Scholar 

  • Lillisand, T. M., Kiefer, R. W., & Chipman, J. W. (2004). Remote sensing and image interpretation (5th ed.). New York, USA: Wiley.

    Google Scholar 

  • Lopez-Granados, F., Jurado-Exposito, M., Pena-Barragan, J. M., & Garcıa-Torres, L. (2005). Using geostatistical and remote sensing approaches for mapping soil properties. European Journal of Agronomy, 23, 279–289. doi:10.1016/j.eja.2004.12.003.

    Google Scholar 

  • Lu, Y. C., Daughtry, C., Hart, G., & Watkins, B. (1997). The current state of precision farming. Food Reviews International, 13, 141–162.

    Google Scholar 

  • Mallarino, A. P., & Wittry, D. J. (2004). Efficacy of grid and zone soil sampling approaches for site-specific assessment of phosphorus, potassium, pH, and organic matter. Precision Agriculture, 5, 131–144. doi:10.1023/B:PRAG.0000022358.24102.1b.

    Google Scholar 

  • Marschner, P., Kandeler, E., & Marschner, B. (2003). Structure and function of the soil microbial community in a long-term fertilizer experiment. Soil Biology and Biochemistry, 35, 453–461. doi:10.1016/S0038-0717(02)00297-3.

    CAS  Google Scholar 

  • Masserschmidt, I., Cuelbas, C. J., Poppi, R. J., De Andrade, J. C., De Abreu, C. A., & Davanzo, C. U. (1999). Determination of organic matter in soils by FTIR/diffuse reflectance and multivariate calibration. Journal of Chemometrics, 13, 265–273. doi:10.1002/(SICI)1099-128X(199905/08)13:3/4<265::AID-CEM552>3.0.CO;2-E.

    CAS  Google Scholar 

  • McBratney, A. B., & Pringle, M. J. (1999). Estimating average and proportional variograms of soil properties and their potential use in precision agriculture. Precision Agriculture, 1, 219–236. doi:10.1023/A:1009995404447.

    Google Scholar 

  • McBratney, A. B., Odeh, I. O. A., Bishop, T. F. A., Dunbar, M. S., & Shatar, T. M. (2000). An overview of pedometric techniques for use in soil survey. Geoderma, 97, 293–327. doi:10.1016/S0016-7061(00)00043-4.

    Google Scholar 

  • McBratney, A. B., Mendonc, M. L., Santos, A., & Minasny, B. (2003). On digital soil mapping. Geoderma, 117, 3–52. doi:10.1016/S0016-7061(03)00223-4.

    Google Scholar 

  • McCarty, G. W., & Reeves, J. B. (2006). Comparisons of near infrared and mid infrared diffuse reflectance spectroscopy for field-scale measurement of soil fertility parameters. Soil Science, 171, 94–102. doi:10.1097/01.ss.0000187377.84391.54.

    CAS  Google Scholar 

  • McCarty, G. W., Reeves, J. B., Reeves, V. B., Follett, R. F., & Kimble, J. M. (2002). Mid-infrared and near-infrared diffuse reflectance spectroscopy for soil carbon measurements. Soil Science Society of America Journal, 66, 640–646.

    Article  CAS  Google Scholar 

  • McKenzie, N. J., Cresswell, H. P., Ryan, P. J., & Grundy, M. (2000). Contemporary land resource survey requires improvements in direct soil measurement. Communications in Soil Science and Plant Analysis, 31, 1553–1569. doi:10.1080/00103620009370525.

    CAS  Google Scholar 

  • Mueller, T. G., & Pierce, F. J. (2003). Soil carbon maps: Enhancing spatial estimates with simple terrain attributes at multiple scales. Soil Science Society of America Journal, 67, 258–267.

    Article  CAS  Google Scholar 

  • Nanni, M. R., & Dematte, M. J. A. (2006a). Spectral reflectance methodology in comparison to traditional soil analysis. Soil Science Society of America Journal, 70, 393–407. doi:10.2136/sssaj2003.0285.

    CAS  Google Scholar 

  • Nanni, M. R., & Dematte, M. J. A. (2006b). Soil line behavior obtained by laboratorial spectroradiometry for different soil classes. Revista Brasileira De Ciencia Do Solo, 30, 1031–1038.

    Google Scholar 

  • Odeh, I. O. A., McBratney, A. B., & Chittleborough, D. J. (1994). Spatial prediction of soil properties from landform attributes derived from a digital elevation model. Geoderma, 63, 197–214. doi:10.1016/0016-7061(94)90063-9.

    Google Scholar 

  • Oliver, M. A., Webster, R., & Slocum, K. (2000). Filtering SPOT imagery by kriging analysis. International Journal of Remote Sensing, 21, 735–752. doi:10.1080/014311600210542.

    Google Scholar 

  • Palacio-Orueta, A., & Ustin, S. L. (1998). Remote sensing of soil properties in the Santa Monica mountains I. Spectral analysis. Remote Sensing of Environment, 65, 170–183. doi:10.1016/S0034-4257(98)00024-8.

    Google Scholar 

  • Palacio-Orueta, A., Pinzon, J. E., Ustin, S. L., & Roberts, D. A. (1999). Remote sensing of soils in the Santa Monica Mountains: II. Hierarchical foreground and background analysis. Remote Sensing of Environment, 68, 138–151. doi:10.1016/S0034-4257(98)00106-0.

    Google Scholar 

  • Patzold, S., Mertens, F. M., Bornemann, L., Koleczek, B., Franke, J., Feilhauer, H., et al. (2008). Soil heterogeneity at the field scale: A challenge for precision crop protection. Precision Agriculture, 9, 367–390. doi:10.1007/s11119-008-9077-x.

    Google Scholar 

  • Pepper, I. L. (1996). Pollution science. New York, USA: Academic Press.

    Google Scholar 

  • Ping, J. L., & Dobermann, A. (2006). Variation in the precision of soil organic carbon maps due to different laboratory and spatial prediction methods. Soil Science, 171, 374–387.

    CAS  Google Scholar 

  • Pocknee, S., Boydell, B. C., Green, H. M., Waters, D. J., & Kvien, C. K. (1996). Directed soil sampling. In P. C. Robert, R. H. Rust, & W. E. Larson (Eds.), Precision agriculture 1996: Proceedings of the third international conference on precision agriculture (pp. 13–22). Madison, USA: American Society of Agronomy, Crop Science Society of America, Soil Science Society of America.

    Google Scholar 

  • Post, W. M., Izaurralde, R. C., Mann, L. K., & Bliss, N. (2001). Monitoring and verifying changes of organic carbon in soil. Climate Change, 51, 73–99. doi:10.1023/A:1017514802028.

    Google Scholar 

  • Ray, S. S., Singh, J. P., Dutta, S., & Panigrahy, S. (2002). Analysis of within field variability of crop and soil using field and spectral information as a pre-cursor to precision crop management. International Archives of the Photogrammetry, Remote Sensing, 34, 302–307.

    Google Scholar 

  • Reeves, D. W. (1997). The role of soil organic matter in maintaining soil quality in continuous cropping systems. Soil & Tillage Research, 43, 131–167. doi:10.1016/S0167-1987(97)00038-X.

    Google Scholar 

  • Reeves, J. B., & McCarty, G. W. (2001). Quantitative analysis of agricultural soils using near infrared reflectance spectroscopy and fibre-optic probe. Journal of Near Infrared Spectroscopy, 9, 25–34.

    CAS  Google Scholar 

  • Reeves, J. B., McCarty, G. W., & Meisinger, J. J. (2000). Near infrared reflectance spectroscopy for the determination of biological activity in agricultural soils. Journal of Near Infrared Spectroscopy, 8, 161–170.

    CAS  Google Scholar 

  • Richardson, A. J., & Wiegand, C. L. (1977). Distinguishing vegetation from soil background information. Photogrammetric Engineering & Remote Sensing, 43, 1541–1552.

    Google Scholar 

  • Ritter, C., Dicke, D., Weis, M., Oebel, H., Piepho, H. P., & Buerchse, A. (2008). An on-farm approach to quantify yield variation and to derive decision rules for site-specific weed management. Precision Agriculture, 9, 133–146. doi:10.1007/s11119-008-9061-5.

    Google Scholar 

  • Roberts, D. A., Gardner, M., & Church, R. (1998). Mapping chaparral in the Santa Monica Mountains using multiple endmember spectral mixture models. Remote Sensing of Environment, 65, 267–277. doi:10.1016/S0034-4257(98)00037-6.

    Google Scholar 

  • Rogge, D. M., Rivard, B., & Feng, J. (2006). Iterative spectral unmixing for optimizing per-pixel endmember sets. IEEE Transactions on Geoscience & Remote Sensing, 44, 3725–3730. doi:10.1109/TGRS.2006.881123.

    Google Scholar 

  • Rossel, R. A. V., Walvoort, D. J. J., McBratney, A. B., Janik, L. J., & Skjemstad, J. O. (2001). Proximal sensing of soil pH and lime requirement by mid infrared diffuse reflectance spectroscopy. In G. Grenier & S. Blackmore (Eds.), Precision agriculture 2001: Third European conference on precision agriculture (pp. 497–508). Montpellier, France: Agro Montpellier (ENSAM).

    Google Scholar 

  • Rossel, R. A. V., Walter, C., & Fouad, Y. (2003). Assessment of two reflectance techniques for the quantification of field soil organic carbon. In J. V. Stafford & A. Werner (Eds.), Precision Agriculture 2003: Fourth European conference on precision agriculture (pp. 697–703). Berlin, Germany: Wageningen Academic Publishers.

    Google Scholar 

  • Rossel, R. A. V., Walvoort, D. J. J., McBratney, A. B., Janik, L. J., & Skjemsta, J. O. (2006). Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma, 131, 59–75. doi:10.1016/j.geoderma.2005.03.007.

    Google Scholar 

  • Roy, S. K., Shibusawa, S., & Okayama, T. (2006). Textural analysis of soil images to quantify and characterize the spatial variation of soil properties using a real-time soil sensor. Precision Agriculture, 7, 419–436. doi:10.1007/s11119-006-9018-5.

    Google Scholar 

  • Schloeder, C. A., Zimmerman, N. E., & Jacobs, M. J. (2001). Comparison of methods for interpolating soil properties using limited data. Soil Science Society of America Journal, 65, 470–479.

    Article  CAS  Google Scholar 

  • Shatar, T. M., & McBratney, A. B. (1999). Empirical modelling of relationships between sorghum yield and soil properties. Precision Agriculture, 1, 249–276. doi:10.1023/A:1009968907612.

    Google Scholar 

  • Shepherd, K. D., & Walsh, M. G. (2002). Development of reflectance spectral libraries for characterization of soil properties. Soil Science Society of America Journal, 66, 988–998.

    Article  CAS  Google Scholar 

  • Shibusawa, S., Imade Anom, S. W., Sato, S., Sasao, A., & Hirako, S. (2001). Soil mapping using the real-time soil spectrophotometer. In G. Grenier & S. Blackmore (Eds.), Precision agriculture 2001: Third European conference on precision agriculture (pp. 497–508). Montpellier, France: Agro Montpellier (ENSAM).

    Google Scholar 

  • Shrestha, D. P., Margate, D. E., van der Meer, F., & Anh, H. V. (2005). Analysis and classification of hyperspectral data for mapping land degradation: An application in Southern Spain. International Journal of Applied Earth Observation and Geoinformation, 7, 85–96. doi:10.1016/j.jag.2005.01.001.

    Google Scholar 

  • Simbahan, G. C., & Dobermann, A. (2006). Sampling optimization based on secondary information and its utilization in soil carbon mapping. Geoderma, 133, 345–362. doi:10.1016/j.geoderma.2005.07.020.

    CAS  Google Scholar 

  • Simbahan, G. C., Dobermann, A., Goovaerts, P., Ping, J. L., & Haddix, M. L. (2006). Fine resolution mapping of soil organic carbon based on multivariate secondary data. Geoderma, 132, 471–489. doi:10.1016/j.geoderma.2005.07.001.

    CAS  Google Scholar 

  • Singh, A., & Harroson, A. (1985). Standardized principal components. International Journal of Remote Sensing, 6, 883–896. doi:10.1080/01431168508948511.

    Google Scholar 

  • Stamatiadis, S., Christofides, C., Tsadilas, C., Samaras, V., Schepers, J. S., & Francis, D. (2005). Ground-sensor soil reflectance as related to soil properties and crop response in a cotton field. Precision Agriculture, 6, 399–411. doi:10.1007/s11119-005-2326-3.

    Google Scholar 

  • Steinhardt, G. C., & Franzmeier, D. P. (1979). Comparison of organic matter content with soil color for silt loam soils of Indiana. Communications in Soil Science and Plant Analysis, 10, 1271–1277. doi:10.1080/00103627909366981.

    CAS  Google Scholar 

  • Stoner, E. R., & Baumgardner, M. F. (1981). Characteristic variations in reflectance of surface soils. Soil Science Society of America Journal, 45, 1161–1165.

    Article  Google Scholar 

  • Sudduth, K. A., & Hummel, J. W. (1991). Evaluation of reflectance methods for soil and soil organic matter sensing. Transactions of the ASAE, 34, 1900–1909.

    Google Scholar 

  • Sullivan, D. G., Shaw, J. N., Rickman, D., Mask, P. L., & Luvall, J. C. (2005). Using remote sensing data to evaluate surface soil properties in Alabama ultisols. Soil Science, 170, 954–968. doi:10.1097/01.ss.0000187350.39611.d7.

    CAS  Google Scholar 

  • Susanne, A., & Michelle, M. W. (1998). Long-term trends of corn yield and soil organic matter in different crop sequences and soil fertility treatments on the Morrow Plot. Advances in Agronomy, 62, 153–197.

    Google Scholar 

  • Tompkins, S., Mustard, J. F., Pieters, C. M., & Forsytth, D. W. (1997). Optimization of endmembers for spectral mixture analysis. Remote Sensing of Environment, 59, 472–489. doi:10.1016/S0034-4257(96)00122-8.

    Google Scholar 

  • Triantafilis, J., Huckel, A. I., & Odeh, I. O. A. (2001). Comparison of statistical prediction methods for estimating field-scale clay content using different combinations of ancillary variables. Soil Science, 166, 415–427. doi:10.1097/00010694-200106000-00007.

    CAS  Google Scholar 

  • Varvel, G. E., Schlemmer, M. R., & Schepers, J. S. (1999). Relationship between spectral data from an aerial image and soil organic matter and phosphorus levels. Precision Agriculture, 1, 291–300. doi:10.1023/A:1009973008521.

    Google Scholar 

  • Walvoort, D. J. J., & McBratney, A. B. (2001). Diffuse reflectance spectrometry as a proximal sensing tool for precision agriculture. In G. Grenier & S. Blackmore (Eds.), Precision agriculture 2001: Third European conference on precision agriculture (pp. 497–508). Montpellier, France: Agro Montpellier (ENSAM).

    Google Scholar 

  • Wetterlind, J., Stenberg, B., & Soderstrom, M. (2008). The use of near infrared (NIR) spectroscopy to improve soil mapping at the farm scale. Precision Agriculture, 9, 57–69. doi:10.1007/s11119-007-9051-z.

    Google Scholar 

  • Wilcox, C. H., Frazier, B. E., & Ball, S. T. (1994). Relationship between soil organic carbon and landsat TM data in Eastern Washington. Photogrammetric Engineering & Remote Sensing, 60, 777–781.

    Google Scholar 

  • Williams, M. M., & Mortensen, D. A. (2000). Crop/weed outcomes from site-specific and uniform soil-applied herbicide applications. Precision Agriculture, 2, 377–388. doi:10.1023/A:1012304116101.

    Google Scholar 

  • Wolf, S. A., & Buttel, F. H. (1996). The political economy of precision farming. American Journal of Agricultural Economics, 78, 1269–1274. doi:10.2307/1243505.

    Google Scholar 

Download references

Acknowledgments

We very much appreciate the help, comments and suggestions of the many colleagues and students. Special thanks go to Professor M. A. Oliver who carefully edited the paper and provided very helpful suggestions. Two anonymous reviewers provided valuable suggestions to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moslem Ladoni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ladoni, M., Bahrami, H.A., Alavipanah, S.K. et al. Estimating soil organic carbon from soil reflectance: a review. Precision Agric 11, 82–99 (2010). https://doi.org/10.1007/s11119-009-9123-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-009-9123-3

Keywords

Navigation