Skip to main content

Advertisement

SpringerLink
Go to cart
  1. Home
  2. Potential Analysis
  3. Article
Restoration of Well-Posedness of Infinite-Dimensional Singular ODE’s via Noise
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Beyond the Bakushinkii veto: regularising linear inverse problems without knowing the noise distribution

26 May 2020

Bastian Harrach, Tim Jahn & Roland Potthast

Nonlinear systems with Hartman-type perturbations

01 January 2019

Nikolaos S. Papageorgiou & Patrick Winkert

Regularisation by regular noise

04 March 2022

Máté Gerencsér

Global Well-posedness of the Stochastic Generalized Kuramoto-Sivashinsky Equation with Multiplicative Noise

01 July 2018

Wei Wu, Shang-bin Cui & Jin-qiao Duan

A note on the generalized Drazin–Riesz invertible operators

17 August 2021

Othman Abad & Hassane Zguitti

Existence and Uniqueness of Exact WKB Solutions for Second-Order Singularly Perturbed Linear ODEs

17 January 2023

Nikita Nikolaev

Wilkinson’s Bus: Weak Condition Numbers, with an Application to Singular Polynomial Eigenproblems

10 March 2020

Martin Lotz & Vanni Noferini

On the Solvability of Stochastic Helmholtz Problem

01 February 2021

M. I. Tleubergenov & D. T. Azhymbaev

A class of singular diffusion equations based on the convex–nonconvex variation model for noise removal

19 January 2021

Gang Dong & Boying Wu

Download PDF
  • Open Access
  • Published: 07 March 2023

Restoration of Well-Posedness of Infinite-Dimensional Singular ODE’s via Noise

  • David Baños  ORCID: orcid.org/0000-0002-3221-40091,
  • Martin Bauer2,
  • Thilo Meyer-Brandis2 &
  • …
  • Frank Proske1 

Potential Analysis (2023)Cite this article

  • 32 Accesses

  • Metrics details

Abstract

In this paper we aim at generalizing the results of A. K. Zvonkin (That removes the drift, 22, 129, 41) and A. Y. Veretennikov (Theory Probab. Appl., 24, 354, 39) on the construction of unique strong solutions of stochastic differential equations with singular drift vector field and additive noise in the Euclidean space to the case of infinite-dimensional state spaces. The regularizing driving noise in our equation is chosen to be a locally non-Hölder continuous Hilbert space valued process of fractal nature, which does not allow for the use of classical construction techniques for strong solutions from PDE or semimartingale theory. Our approach, which does not resort to the Yamada-Watanabe principle for the verification of pathwise uniqueness of solutions, is based on Malliavin calculus.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Amine, O., Baños, D., Proske, F.: Regularity properties of the stochastic flow of a skew fractional brownian motion. arXiv:1805.04889 (2018)

  2. Amine, O., Coffie, E., Harang, F., Proske, F.: A bismut-elworthy-li formula for singular SDE’s driven by a fractional brownian motion and applications to rough volatility modeling. arXiv preprint arXiv:1805.11435 (2018)

  3. Anari, N., Gurvits, L., Gharan, S., Saberi, A.: Simply exponential approximation of the permanent of positive semidefinite matrices. In: 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS), pp. 914–925. IEEE (2017)

  4. Anderson, T.W.: An introduction to multivariate statistical analysis. Technical report, Wiley New York (1962)

  5. Baños, D., Haferkorn, H., Proske, F.: Strong uniqueness of singular stochastic delay equations. arXiv:1707.02271 (2017)

  6. Baños, D., Nilssen, T., Proske, F.: Strong existence and higher order fréchet differentiability of stochastic flows of fractional Brownian motion driven SDE’s with singular drift. arXiv:1511.02717v2 (2018)

  7. Baños, D., Ortiz-Latorre, S., Pilipenko, A., Proske, F.: Strong solutions of SDE’s with generalized drift and multidimensional fractional Brownian initial noise. arXiv:1705.01616 (2017)

  8. Bauer, M., Meyer-Brandis, T., Proske, F.: Strong solutions of mean-field stochastic differential equations with irregular drift. Electron. J. Probab., vol. 23 (2018)

  9. Bogachev, V.: Differentiable measures, and the Malliavin calculus. Number 164 in mathematical surveys and monographs AMS (2010)

  10. Borovkov, K., Mishura, Y., Novikov, A., Zhitlukhin, M.: Bounds for expected maxima of Gaussian processes and their discrete approximations. Stochastics 89(1), 21–37 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. Catellier, R., Gubinelli, M.: Averaging along irregular curves and regularisation of ODEs. Stoch. Process. Appl. 126(8), 2323–2366 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cuzick, J., DuPreez, J.: Joint continuity of Gaussian local times. Annals Probab., pp. 810–817 (1982)

  13. Da Prato, G., Flandoli, F., Priola, E., Röckner, M.: Strong uniqueness for stochastic evolution equations in hilbert spaces perturbed by a bounded measurable drift. Annals Probab. 41(5), 3306–3344 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Da Prato, G., Malliavin, P., Nualart, D.: Compact families of Wiener functionals. Comptes Rendus De l’Académie Des Sciences Série 1, Mathématique 315(12), 1287–1291 (1992)

    MathSciNet  MATH  Google Scholar 

  15. Davie, A.: Uniqueness of solutions of stochastic differential equations. Int. Math. Res. Notices (2007)

  16. Decreusefond, L.: Stochastic analysis of the fractional Brownian motion. Potential Anal. 10(2), 177–214 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Engelbert, H.: On the theorem of T. Yamada and S Watanabe. Stochastics Int. J. Probab. Stochastic Process. 36(3-4), 205–216 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fang, S., Zhang, T.: Stochastic differential equations with non-lipschitz coefficients: I. Pathwise uniqueness and large deviation. C.R. Acad. Sci. Paris Ser. I. 337, 737–740 (2003)

    Article  MATH  Google Scholar 

  19. Flandoli, F.: Random perturbation of PDEs and fluid dynamic models. In: École d’Été de Probabilités de Saint-Flour XL–2010, vol 2015. Springer (2011)

  20. Flandoli, F, Nilssen, T, Proske, F: Malliavin differentiability and strong solutions for a class of SDE in Hilbert spaces. Preprint series: pure mathematics (2013)

  21. Gyöngy, I., Krylov, N.: Existence of strong solutions for itô’s stochastic equations via approximations. Probab. Theory Related Fields 105(2), 143–158 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gyöngy, I., Martínez, T.: On stochastic differential equations with locally unbounded drift. Czechoslov. Math. J. 51(4), 763–783 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. Haadem, S., Proske, F.: On the construction and Malliavin differentiability of solutions of Levy noise driven SDE’s with singular coefficients. J. Functional Anal. 266(8), 5321–5359 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Krylov, N., Röckner, M.: Strong solutions of stochastic equations with singular time dependent drift. Probab. Theory Related Fields 131(2), 154–196 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Leha, G., Ritter, G.: On solutions to stochastic differential equations with discontinuous drift in Hilbert space. Math. Ann. 270(1), 109–123 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  26. Li, W., Wei, A.: A Gaussian inequality for expected absolute products. J. Theor. Probab. 25(1), 92–99 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Menoukeu-Pamen, O., Meyer-Brandis, T., Nilssen, T., Proske, F., Zhang, T.: A variational approach to the construction and Malliavin differentiability of strong solutions of SDE’s. Math. Ann. 357(2), 761–799 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Meyer-Brandis, T., Proske, F.: On the existence and explicit representability of strong solutions of lévy noise driven SDE’s with irregular coefficients. Commun. Math. Sci. 4(1), 129–154 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. Meyer-Brandis, T., Proske, F.: Construction of strong solutions of SDE’s via Malliavin calculus. J. Funct. Anal. 258(11), 3922–3953 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Mohammed, S., Nilssen, T., Proske, F.: Sobolev differentiable stochastic flows for SDEs with singular coefficients: applications to the transport equation. Annals Probab. 43(3), 1535–1576 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Moser, J.: A rapidly convergent iteration method and nonlinear differential equations. Uspekhi Matematicheskikh Nauk 23(4), 179–238 (1968)

    MathSciNet  MATH  Google Scholar 

  32. Nualart, D.: The Malliavin calculus and related topics. Probability and its applications. Springer second edn. (2006)

  33. Nualart, D., Ouknine, Y.: Regularization of differential equations by fractional noise. Stoch. Process. Appl. 102(1), 103–116 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  34. Oldham, K., Spanier, J.: The fractional calculus theory and applications of differentiation and integration to arbitrary order, vol. 111. Elsevier (1974)

  35. Pitt, L.D.: Local times for Gaussian vector fields. Indiana University Math. J. 27(2), 309–330 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  36. Pylypenko, A., Tantsyura, M.: Limit theorem for countable systems of stochastic differential equations. Ukr. Math. J. 68(10), 1591–1619 (2017)

    Article  MathSciNet  Google Scholar 

  37. Samko, S., Kilbas, A., Marichev, O.: Fractional integrals and derivatives: theory and applications Gordo and breach science publishers (1993)

  38. Sznitman, A.-S.: Topics in propagation of chaos. In: Ecole D’Été De Probabilité De Saint-Flour XIX — 1989, vol. 1464 of Lecture Notes in Mathematics, Chapter 3, pp. 165–251. Springer (1991)

  39. Veretennikov, A.: On the strong solutions of stochastic differential equations. Theory Probab. Appl. 24(2), 354 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  40. Yamada, T., Watanabe, S.: On the uniqueness of solutions of stochastic differential equations. J. Math. Kyoto University 11(1), 155–167 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  41. Zvonkin, A.: A transformation of the phase space of a diffusion process that removes the drift. Math. USSR-Sb. 22(1), 129 (1974)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

Open access funding provided by University of Oslo (incl Oslo University Hospital).

Author information

Authors and Affiliations

  1. Department of Mathematics, University of Oslo, Moltke Moes vei 35, P.O. Box 1053 Blindern, 0316 Oslo, Norway

    David Baños & Frank Proske

  2. Department of Mathematics, LMU, Theresienstr. 39, D-80333, Munich, Germany

    Martin Bauer & Thilo Meyer-Brandis

Authors
  1. David Baños
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Martin Bauer
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Thilo Meyer-Brandis
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Frank Proske
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to David Baños.

Ethics declarations

Conflict of Interests

No potential conflict of interest was reported by the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research is partially supported by the FINEWSTOCH (NFR-ISP) project.

Appendices

Appendix A: Compactness Criterion

The following result which is originally due to [14] in the finite dimensional case and which can be e.g. found in [9], provides a compactness criterion of square integrable cylindrical Wiener processes on a Hilbert space.

Theorem A.1

Let (Bt)t∈[0,T] be a cylindrical Wiener process on a separable Hilbert space with respect to a complete probability space \(({\Omega } ,\mathcal {F},\mu )\), where \(\mathcal {F}\) is generated by (Bt)t∈[0,T]. Further, let \({\mathscr{L}}_{HS}(\mathcal{H} ,\mathbb{R})\) be the space of Hilbert-Schmidt operators from to \(\mathbb {R}\) and let \(D: \mathbb {D}^{1,2}\longrightarrow L^{2}({\Omega } ;L^{2}([0,T])\otimes {\mathscr{L}}_{HS}(\mathcal{H},\mathbb {R}))\) be the Malliavin derivative in the direction of (Bt)t∈[0,T], where \(\mathbb {D}^{1,2}\) is the space of Malliavin differentiable random variables in L2(Ω).

Suppose that C is a self-adjoint compact operator on \(L^{2}([0,T])\otimes {\mathscr{L}}_{HS}(\mathcal{H},\mathbb {R})\) with dense image. Then for any c > 0 the set

$$ \mathcal{G}=\left\{ G\in \mathbb{D}^{1,2}:\left\Vert G\right\Vert_{L^{2}({\Omega} )}+\left\Vert C^{-1}DG\right\Vert_{L^{2}({\Omega};L^{2}([0,T])\otimes \mathcal{L}_{HS}(\mathcal{H},\mathbb{R}))}\leq c\right\} $$

is relatively compact in L2(Ω).

In this paper we aim at using a special case of the previous theorem, which is more suitable for explicit estimations. To this end we need the following auxiliary result from [14].

Lemma A.2

Denote by vs,s ≥ 0, with v0 = 1 the Haar basis of L2([0, 1]). Define for any \(0<\alpha <\frac {1}{2}\) the operator Aα on L2([0, 1]) by

$$ A_{\alpha }v_{s}=2^{i\alpha }v_{s},\quad \text{ if }s=2^{i}+j,\quad i\geq 0,\quad 0\leq j\leq 2^{i}, $$

and

$$ A_{\alpha }1=1. $$

Then for \(\alpha <\beta <\frac {1}{2}\) we have that

$$ \begin{array}{@{}rcl@{}} \left\Vert A_{\alpha }f\right\Vert_{L^{2}([0,1])}^{2} \leq 2(\left\Vert f\right\Vert_{L^{2}([0,1])}^{2}+\frac{1}{1-2^{-2(\beta -\alpha )}}{{\int}_{0}^{1}}{{\int}_{0}^{1}}\frac{\left\vert f(t)-f(u)\right\vert^{2}}{\left\vert t-u\right\vert^{1+2\beta }}dtdu). \end{array} $$

Theorem A.3

Let Dk be the Malliavin derivative in the direction of the k-th component of (Bt)t∈[0,T]. In addition, let \(0<\alpha _{k}<\beta _{k}<\frac {1}{2}\) and γk > 0 for all k ≥ 1. Define the sequence \(\mu _{s,k}=2^{-i\alpha _{k}}\gamma _{k}\), if s = 2i + j, i ≥ 0, 0 ≤ j ≤ 2i, k ≥ 1. Assume that μs,k→0 for \(s,k\longrightarrow \infty \). Let c > 0 and \(\mathcal {G}\) the collection of all \(G\in \mathbb {D}^{1,2}\) such that

$$ \left\Vert G\right\Vert_{L^{2}({\Omega} )}\leq c, $$
$$ \sum\limits_{k\geq 1}\gamma_{k}^{-2}\left\Vert D^{k}G\right\Vert_{L^{2}({\Omega};L^{2}([0,1]))}^{2}\leq c, $$

and

$$ \sum\limits_{k\geq 1}\frac{1}{(1-2^{-2(\beta_{k}-\alpha_{k})}){\gamma_{k}^{2}}}{{\int}_{0}^{1}}{{\int}_{0}^{1}}\frac{\left\Vert {D_{t}^{k}}G-{D_{u}^{k}}G\right\Vert_{L^{2}({\Omega})}^{2}}{\left\vert t-u\right\vert^{1+2\beta_{k}}}dtdu\leq c. $$

Then \(\mathcal {G}\) is relatively compact in L2(Ω).

Proof

As before denote by vs,s ≥ 0, with v0 = 1 the Haar basis of L2([0, 1]) and by \(e_{k}^{\ast }= \langle e_{k}, \cdot \rangle _{H}, k\geq 1\), an orthonormal basis of \({\mathscr{L}}_{HS}(\mathcal{H},\mathbb {R})\), where ek,k ≥ 0, is an orthonormal basis of . Define a self-adjoint compact operator C on \(L^{2}([0,1])\otimes {\mathscr{L}}_{HS}(\mathcal{H} ,\mathbb {R})\) with dense image by

$$ C(v_{s}\otimes e_{k}^{\ast })=\mu_{s,k}v_{s}\otimes e_{k}^{\ast },\quad s\geq 0,\quad k\geq 1. $$

Then it follows for \(G\in \mathbb {D}^{1,2}\) from Lemma A.2 that

$$ \begin{array}{@{}rcl@{}} &&\left\Vert C^{-1}DG\right\Vert_{L^{2}({\Omega} ;L^{2}([0,1])\otimes \mathcal{L}_{HS}(\mathcal{H},\mathbb{R}))}^{2} \\ &&~~=\sum\limits_{k\geq 1}\sum\limits_{s\geq 0}\mu_{s,k}^{-2}E[\left\langle DG,v_{s}\otimes e_{k}^{\ast }\right\rangle_{L^{2}([0,1])\otimes \mathcal{L}_{HS}(\mathcal{H},\mathbb{R}))}^{2}] \\ &&~~=\sum\limits_{k\geq 1}\gamma_{k}^{-2}\left\Vert A_{\alpha_{k}}D^{k}G\right\Vert_{L^{2}({\Omega} ;L^{2}([0,1]))}^{2} \\ &&~~\leq 2\sum\limits_{k\geq 1}\gamma_{k}^{-2}\left\Vert D^{k}G\right\Vert_{L^{2}({\Omega} ;L^{2}([0,1]))}^{2} \\ &&~~~~+2\sum\limits_{k\geq 1}\frac{1}{(1-2^{-2(\beta_{k}-\alpha_{k})}){\gamma_{k}^{2}}} {{\int}_{0}^{1}}{{\int}_{0}^{1}}\frac{\left\Vert {D_{t}^{k}}G-{D_{u}^{k}}G\right\Vert_{L^{2}({\Omega} )}^{2}}{\left\vert t-u\right\vert^{1+2\beta_{k}}}dtdu \\ &&~~\leq M \end{array} $$

for a constant \(M<\infty \). So using Theorem A.1 we obtain the result. □

Appendix B: Integration by Parts Formula

In this section we derive an integration by parts formula similar to [6] which is used in the proof of Theorem 4.10 to verify the conditions of the compactness criterion Theorem A.3. Before stating the integration by parts formula, we start by giving some definitions and notations frequently used during the course of this section.

Let n be a given integer. We consider the function \(f:[0,T]^{n}\times (\mathbb {R}^{d})^{n} \rightarrow \mathbb {R}\) of the form

$$ \begin{array}{@{}rcl@{}} f(s,z) = \prod\limits_{j=1}^{n} f_{j} (s_{j}, z_{j}), \quad s = (s_{1}, \dots, s_{n}) \!\in\! [0,T]^{n}, \quad z = (z_{1}, {\dots} ,z_{n}) \in (\mathbb{R}^{d})^{n}, \end{array} $$
(42)

where \(f_{j} : [0,T] \times \mathbb {R}^{d} \rightarrow \mathbb {R}\), \(j=1,\dots , n\), are compactly supported smooth functions. Further, we deal with the function \({\varkappa }: [0,T]^{n} \rightarrow \mathbb {R}\) which is of the form

$$ \begin{array}{@{}rcl@{}} {\varkappa} (s) = \prod\limits_{j=1}^{n} {\varkappa}_{j} (s_{j}), \quad s \in [0,T]^{n}, \end{array} $$
(43)

with integrable factors \({\varkappa }_{j} : [0,T] \rightarrow \mathbb {R}\), \(j=1,\dots , n\).

Let αj be a multi-index and \(D^{\alpha _{j}}\) its corresponding differential operator. For \(\alpha := (\alpha _{1}, \dots , \alpha _{n}) \in \mathbb {N}_{0}^{d\times n}\) we define the norm \(|\alpha | = {\sum }_{j=1}^{n} {\sum }_{k=1}^{d} \alpha _{j}^{(k)}\) and write

$$ \begin{array}{@{}rcl@{}} D^{\alpha} f(s,z) = \prod\limits_{j=1}^{n} D^{\alpha_{j}} f_{j} (s_{j}, z_{j}). \end{array} $$

Let k be an arbitrary integer. Given \((s,z) = (s_{1}, \dots , s_{kn} ,z_{1}, \dots , z_{n}) \in [0,T]^{kn} \times (\mathbb {R}^{d})^{n}\) and a shuffle permutation \(\sigma \in \mathcal {S}(n,n)\) we define the shuffled functions

$$ f_{\sigma}(s,z) := \prod\limits_{j=1}^{kn} f_{[\sigma (j)]} (s_{j}, z_{[\sigma (j)]}) $$

and

$$ {\varkappa}_{\sigma }(s) := \prod\limits_{j=1}^{kn} {\varkappa}_{[\sigma(j)]}(s_{j}), $$

where [j] is equal to (j − in) if (in + 1) ≤ j ≤ (i + 1)n, \(i=0, \dots , (k-1)\). For a multi-index α, we define

$$ \begin{array}{@{}rcl@{}} {\Psi}_{\alpha}^{f} (\theta, t, z, H, d) \!:=\! \left( \prod\limits_{k=1}^{d} \sqrt{(2\left\vert \alpha^{(k)}\right\vert)!}\! \right) \sum\limits_{\sigma \in \mathcal{S}(n,n)} {\int}_{{\Delta}_{\theta, t}^{2n}} \left\vert f_{\sigma}(s,z)\right\vert \vert {\Delta} s \vert^{-H \left( 1+\alpha_{[\sigma({\Delta})]}\right)} ds, \end{array} $$
(44)

and

$$ \begin{array}{@{}rcl@{}} {\Psi}_{\alpha}^{{\varkappa}}(\theta, t, H, d) := \left( \prod\limits_{k=1}^{d} \sqrt{(2\left\vert \alpha^{(k)}\right\vert)!} \right) \sum\limits_{\sigma \in \mathcal{S}(n,n)} {\int}_{{\Delta}_{\theta, t}^{2n}} \left\vert {\varkappa}_{\sigma}(s)\right\vert \vert {\Delta} s \vert^{-H \left( 1+\alpha_{[\sigma({\Delta})]} \right)} ds, \end{array} $$
(45)

where for any \(a,b \in \mathbb {R}\)

$$ \begin{array}{@{}rcl@{}} &&\vert {\Delta} s \vert^{H_{k} \left( a+b\cdot \alpha_{[\sigma({\Delta})]}^{(k)} \right)} := \vert s_{1} \vert^{H_{k} \left( a + b\left( \alpha_{[\sigma(1)]}^{(k)} + \alpha_{[\sigma(2n)]}^{(k)}\right) \right)} \prod\limits_{j=2}^{2n} \left| s_{j}-s_{j-1}\right|^{H_{k} \left( a + b\left( \alpha_{\lbrack \sigma(j)]}^{(k)} + \alpha_{\lbrack \sigma(j-1)]}^{(k)} \right) \right)}, \\ &&| {\Delta} s |^{H \left( a+b\cdot \alpha_{[\sigma({\Delta})]} \right)} := \prod\limits_{k=1}^{d} \vert {\Delta} s \vert^{H_{k} \left( a+b\cdot \alpha_{[\sigma({\Delta})]}^{(k)} \right)}. \end{array} $$

Theorem B.1

Suppose the functions \({\Psi }_{\alpha }^{f}(\theta , t, z, H, d)\) and \({\Psi }_{\alpha }^{{\varkappa }}(\theta , t, H, d)\) defined in Eqs. 44 and 45, respectively, are finite. Then,

$$ \begin{array}{@{}rcl@{}} {\Lambda}_{\alpha}^{f} (\theta, t, z) := (2\pi)^{-dn} {\int}_{(\mathbb{R}^{d})^{n}} {\int}_{{\Delta}_{\theta,t}^{n}} \prod\limits_{j=1}^{n} f_{j} (s_{j}, z_{j})(-iu_{j})^{\alpha_{j}} e^{-i\left\langle u_{j}, \widehat{B}_{s_{j}}^{d,H} - z_{j} \right\rangle }dsdu, \end{array} $$
(46)

where \(\widehat {B}_{t}^{d,H} := \left (\frac {B_{t}^{H_{1}}}{\sqrt {\mathfrak {K}_{H_{1}}}}, \dots , \frac {B_{t}^{H_{d}}}{\sqrt {\mathfrak {K}_{H_{d}}}} \right )^{\top }\) and \(\mathfrak {K}_{H_{k}}\) is the constant in Lemma 2.4, is a square integrable random variable in L2(Ω) and

$$ \begin{array}{@{}rcl@{}} \mathbb{E}\left[{\left\vert {\Lambda}_{\alpha }^{f} (\theta, t, z)\right\vert^{2}}\right] \leq \frac{T^{\frac{\vert \alpha \vert}{6}}}{(2\pi)^{dn}} {\Psi}_{\alpha}^{f} (\theta, t, z, H, d). \end{array} $$
(47)

Furthermore,

$$ \begin{array}{@{}rcl@{}} \mathbb{E}\left[\left|{{\int}_{(\mathbb{R}^{d})^{n}}{\Lambda}_{\alpha }^{{\varkappa} f}(\theta, t, z)dz}\right|\right] \leq \frac{T^{\frac{\vert \alpha \vert}{12}}}{\sqrt{2\pi}^{dn}} ({\Psi}_{\alpha }^{{\varkappa} }(\theta, t, H, d))^{\frac{1}{2}} \prod\limits_{j=1}^{n} \left\Vert f_{j}\right\Vert_{L^{1}(\mathbb{R}^{d};L^{\infty}([0,T]))}, \end{array} $$
(48)

and the integration by parts formula

$$ \begin{array}{@{}rcl@{}} {\int}_{{\Delta}_{\theta ,t}^{n}} D^{\alpha} f \left( s, \widehat{B}_{s}^{d,H} \right) ds = {\int}_{(\mathbb{R}^{d})^{n}} {\Lambda}_{\alpha}^{f}(\theta, t, z) dz, \end{array} $$
(49)

holds.

Proof

For notational simplicity we consider merely the case 𝜃 = 0 and write \({\Lambda }_{\alpha }^{f} (t, z) := {\Lambda }_{\alpha }^{f} (0, t, z)\). For any integrable function \(g:(\mathbb {R}^{d})^{n}\longrightarrow \mathbb {C}\) we have that

$$ \begin{array}{@{}rcl@{}} &&\left\vert {\int}_{(\mathbb{R}^{d})^{n}}g(u_{1},...,u_{n})du_{1}...du_{n} \right\vert^{2} \\ &&\quad ={\int}_{(\mathbb{R}^{d})^{n}}g(u_{1},...,u_{n})du_{1}...du_{n}{\int}_{(\mathbb{R}^{d})^{n}}\overline{g(u_{n+1},...,u_{2n})}du_{n+1}...du_{2n}\\ &&\quad ={\int}_{(\mathbb{R}^{d})^{n}}g(u_{1},...,u_{n})du_{1}...du_{n}(-1)^{dn}{\int}_{(\mathbb{R}^{d})^{n}}\overline{g(-u_{n+1},...,-u_{2n})} du_{n+1}...du_{2n}, \end{array} $$

where the change of variables (un+ 1,...,u2n)↦(−un+ 1,...,−u2n) was applied in the last equality. Thus,

$$ \begin{array}{@{}rcl@{}} \left\vert {\Lambda}_{\alpha }^{f}(t,z)\right\vert^{2} &=& (2\pi )^{-2dn}(-1)^{dn}{\int}_{(\mathbb{R}^{d})^{2n}}{\int}_{{\Delta}_{0,t}^{n}}\prod\limits_{j=1}^{n}f_{j}(s_{j},z_{j})(-iu_{j})^{\alpha_{j}}e^{-i\left\langle u_{j}, \widehat{B}^{d,H}_{s_{j}}-z_{j}\right\rangle }ds \\ &&\times {\int}_{{\Delta}_{0,t}^{n}}\prod\limits_{j=n+1}^{2n}f_{[j]}(s_{j},z_{[j]})(-iu_{j})^{\alpha_{\lbrack j]}}e^{-i\left\langle u_{j}, \widehat{B}^{d,H}_{s_{j}}-z_{[j]}\right\rangle}ds du \\ &=& (2\pi )^{-2dn}(-1)^{dn} ~ i^{\vert \alpha \vert} \sum\limits_{\sigma \in \mathcal{S}(n,n)}{\int}_{(\mathbb{R}^{d})^{2n}}\left( \prod\limits_{j=1}^{n}e^{-i\left\langle z_{j},u_{j}+u_{j+n}\right\rangle }\right) \\ &&\times {\int}_{{\Delta}_{0,t}^{2n}}f_{\sigma }(s,z) \left( \prod\limits_{j=1}^{2n}u_{\sigma(j)}^{\alpha_{\lbrack \sigma (j)]}} \right) \exp \left\{- i \sum\limits_{j=1}^{2n}\left\langle u_{\sigma (j)}, \widehat{B}_{s_{j}}^{d,H} \right\rangle \right\} ds du, \end{array} $$

where we applied shuffling in the sense of Eq. 9. Taking the expectation on both sides together with the independence of the fractional Brownian motions \(B^{H_{k}}\), k = 1,...,d, yields that

$$ \begin{array}{@{}rcl@{}} &&\mathbb{E}\left[{\left\vert {\Lambda}_{\alpha }^{f}(t,z)\right\vert^{2}}\right] \\ &&\quad =(2\pi )^{-2dn}(-1)^{dn}~ i^{\vert \alpha \vert} \sum\limits_{\sigma \in \mathcal{S}(n,n)}{\int}_{(\mathbb{R}^{d})^{2n}}\left( \prod\limits_{j=1}^{n} e^{-i\left\langle z_{j},u_{j}+u_{j+n}\right\rangle }\right) \\ &&\qquad \times {\int}_{{\Delta}_{0,t}^{2n}}f_{\sigma }(s,z) \left( \prod\limits_{j=1}^{2n} u_{\sigma(j)}^{\alpha_{\lbrack \sigma (j)]}} \right) \exp\left\{ -\frac{1}{2} \text{Var}{\sum\limits_{j=1}^{2n} \left\langle u_{\sigma (j)}, \widehat{B}_{s_{j}}^{d,H} \right\rangle}\right\} ds du \\ &&\quad = (2\pi )^{-2dn}(-1)^{dn} ~ i^{\vert \alpha \vert} \sum\limits_{\sigma \in \mathcal{S}(n,n)}{\int}_{(\mathbb{R}^{d})^{2n}} \left( \prod\limits_{j=1}^{n} e^{-i\left\langle z_{j} ,u_{j} + u_{j+n}\right\rangle}\right) \\ &&\qquad \times {\int}_{{\Delta}_{0,t}^{2n}}f_{\sigma }(s,z) \left( \prod\limits_{j=1}^{2n} u_{\sigma(j)}^{\alpha_{\lbrack \sigma (j)]}} \right) \exp\left\{ -\frac{1}{2} \sum\limits_{k=1}^{d} \text{Var}{\sum\limits_{j=1}^{2n}u_{\sigma(j)}^{(k)} \frac{B_{s_{j}}^{H_{k}}}{\sqrt{\mathfrak{K}_{H_{k}}}}} \right\}ds du \\ &&\quad =(2\pi )^{-2dn}(-1)^{dn} ~ i^{\vert \alpha \vert} \sum\limits_{\sigma \in \mathcal{S}(n,n)}{\int}_{(\mathbb{R}^{d})^{2n}}\left( \prod\limits_{j=1}^{n} e^{-i\left\langle z_{j},u_{j}+u_{j+n}\right\rangle }\right) \\ &&\qquad \times {\int}_{{\Delta}_{0,t}^{2n}} f_{\sigma }(s,z) \left( \prod\limits_{j=1}^{2n} u_{\sigma(j)}^{\alpha_{\lbrack \sigma (j)]}} \right) \prod\limits_{k=1}^{d}\exp \left\{ -\frac{1}{2 \mathfrak{K}_{H_{k}}} (u_{\sigma}^{(k)})^{\top} {\Sigma}_{k} u_{\sigma}^{(k)} \right\} ds du, \end{array} $$
(50)

where \(u_{\sigma }^{(k)} = \left (u_{\sigma (1)}^{(k)}, \dots , u_{\sigma (2n)}^{(k)} \right )^{\top }\) and

$$ {\Sigma}_{k} = {\Sigma}_{k}(s):= \left( \mathbb{E}\left[{B_{s_{i}}^{H_{k}}B_{s_{j}}^{H_{k}}}\right]\right)_{1\leq i,j\leq 2n}. $$

Moreover, we obtain for every \(\sigma \in \mathcal {S}(n,n)\) that

$$ \begin{array}{@{}rcl@{}} &&{\int}_{{\Delta}_{0,t}^{2n}}\left\vert f_{\sigma }(s,z)\right\vert {\int}_{(\mathbb{R}^{d})^{2n}} \prod\limits_{k=1}^{d} \left( \left( \prod\limits_{j=1}^{2n}\left\vert u_{\sigma(j)}^{(k)}\right\vert^{\alpha_{[\sigma (j)]}^{(k)}} \right) e^{-\frac{1}{2 \mathfrak{K}_{H_{k}}} (u_{\sigma}^{(k)})^{\top} {\Sigma}_{k} u_{\sigma}^{(k)}} \right) du ds \\ &&\quad ={\int}_{{\Delta}_{0,t}^{2n}}\left\vert f_{\sigma }(s,z)\right\vert \prod\limits_{k=1}^{d} \left( {\int}_{\mathbb{R}^{2n}} \left( \prod\limits_{j=1}^{2n}\left\vert u_{j}^{(k)}\right\vert^{\alpha_{[\sigma (j)]}^{(k)}}\right) e^{-\frac{1}{2} \left\langle \frac{{\Sigma}_{k}}{\mathfrak{K}_{H_{k}}} u^{(k)},u^{(k)}\right\rangle } du^{(k)} \right) ds, \end{array} $$
(51)

where \(u^{(k)} := \left (u_{1}^{(k)}, \dots , u_{2n}^{(k)} \right )^{\top }.\) For every 1 ≤ k ≤ d we have by using substitution that

$$ \begin{array}{@{}rcl@{}} &&{\int}_{\mathbb{R}^{2n}} \left( \prod\limits_{j=1}^{2n}\left\vert u_{j}^{(k)}\right\vert^{\alpha_{[\sigma (j)]}^{(k)}}\right) e^{-\frac{1}{2}\left\langle \frac{{\Sigma}_{k}}{\mathfrak{K}_{H_{k}}} u^{(k)}, u^{(k)}\right\rangle} du^{(k)} \\ &&\quad =\frac{\mathfrak{K}_{H_{k}}^{n}}{(\det {\Sigma}_{k})^{1/2}}{\int}_{\mathbb{R}^{2n}} \left( \prod\limits_{j=1}^{2n} \left \vert \left\langle \sqrt{\mathfrak{K}_{H_{k}}} {\Sigma}_{k}^{-1/2}u^{(k)},\widetilde{e}_{j}\right\rangle \right\vert^{\alpha_{[\sigma (j)]}^{(k)}}\right) e^{-\frac{1}{2}\left\langle u^{(k)},u^{(k)}\right\rangle} du^{(k)}. \end{array} $$
(52)

Considering a standard Gaussian random vector \(Z\sim \mathcal {N}(0,\text{Id}_{2n})\), we get that

$$ \begin{array}{@{}rcl@{}} &&{\int}_{\mathbb{R}^{2n}} \left( \prod\limits_{j=1}^{2n}\left\vert \left\langle {\Sigma}_{k}^{-1/2}u^{(k)},\widetilde{e}_{j} \right\rangle \right\vert^{\alpha_{[\sigma(j)]}^{(k)}}\right) e^{-\frac{1}{2}\left\langle u^{(k)},u^{(k)}\right\rangle} du^{(k)} \\ &&\quad = (2\pi )^{n}\mathbb{E}\left[{\prod\limits_{j=1}^{2n}\left\vert \left\langle {\Sigma}_{k}^{-1/2}Z,\widetilde{e}_{j}\right\rangle \right\vert^{\alpha_{[\sigma(j)]}^{(k)}}}\right]. \end{array} $$
(53)

Using a Brascamp-Lieb type inequality which is due to Lemma C.1, we further get that

$$ \begin{array}{@{}rcl@{}} \mathbb{E}\left[{\prod\limits_{j=1}^{2n}\left\vert \left\langle {\Sigma}_{k}^{-1/2}Z, \widetilde{e}_{j}\right\rangle \right\vert^{\alpha_{[\sigma (j)]}^{(k)}}}\right] \leq \sqrt{\text{perm}{A_{k}}}=\sqrt{\sum\limits_{\pi \in S_{2\left\vert \alpha^{(k)}\right\vert }}\prod\limits_{i=1}^{2\left\vert \alpha^{(k)}\right\vert}a_{i,\pi (i)}^{(k)}}, \end{array} $$

where \(\left \vert \alpha ^{(k)}\right \vert :={\sum }_{j=1}^{n}\alpha _{j}^{(k)}\) and permAk is the permanent of the covariance matrix \(A_{k} =(a_{i,j}^{(k)})_{1\leq i,j \leq 2\left \vert \alpha ^{(k)}\right \vert }\) of the Gaussian random vector

$$ \begin{array}{@{}rcl@{}} \underset{\alpha_{[\sigma (1)]}^{(k)}\text{ times}}{\left( \underbrace{\left\langle {\Sigma}_{k}^{-1/2}Z,\widetilde{e}_{1}\right\rangle ,...,\left\langle {\Sigma}_{k}^{-1/2}Z, \widetilde{e}_{1}\right\rangle}\right.}, {\dots} ,\underset{\alpha_{[\sigma (2n)]}^{(k)}\text{ times}}{\left.\underbrace{\left\langle {\Sigma}_{k}^{-1/2}Z, \widetilde{e}_{2n}\right \rangle ,...,\left\langle {\Sigma}_{k}^{-1/2}Z, \widetilde{e}_{2n}\right\rangle}\right)}, \end{array} $$

and Sm denotes the permutation group of size m. Using an upper bound for the permanent of positive semidefinite matrices which is due to [3], we find that

$$ \begin{array}{@{}rcl@{}} \text{perm}{A_{k}}=\sum\limits_{\pi \in S_{2\left\vert \alpha^{(k)}\right\vert}}\prod\limits_{i=1}^{2\left\vert \alpha^{(k)}\right\vert }a_{i,\pi (i)}^{(k)}\leq \left( 2\left\vert \alpha^{(k)}\right\vert \right)!\prod\limits_{i=1}^{2\left\vert \alpha^{(k)}\right\vert }a_{i,i}^{(k)}. \end{array} $$
(54)

Now let \({\sum }_{l=1}^{j-1}\alpha _{[\sigma (l)]}^{(k)}+1 \leq i \leq {\sum }_{l=1}^{j}\alpha _{[\sigma (l)]}^{(k)}\) for some fixed j ∈{1,..., 2n}. Then

$$ \begin{array}{@{}rcl@{}} a_{i,i}^{(k)}=\mathbb{E}\left[{\left\langle {\Sigma}_{k}^{-1/2}Z,\widetilde{e}_{j} \right\rangle \left\langle {\Sigma}_{k}^{-1/2}Z,\widetilde{e}_{j} \right\rangle}\right]. \end{array} $$

Substitution gives moreover that

$$ \mathbb{E}[{\left\langle {\Sigma}_{k}^{-1/2}Z, \widetilde{e}_{j}\right\rangle \left\langle {\Sigma}_{k}^{-1/2}Z, \widetilde{e}_{j} \right\rangle}] = (\det {\Sigma}_{k})^{1/2}\frac{1}{(2\pi )^{n}}{\int}_{\mathbb{R}^{2n}}{u_{j}^{2}}\exp \left\lbrace -\frac{1}{2}\left\langle {\Sigma}_{k} u, u\right\rangle \right\rbrace du. $$
(55)

Applying Lemma C.2 we get

$$ \begin{array}{@{}rcl@{}} {\int}_{\mathbb{R}^{2n}}{u_{j}^{2}}\exp \left\lbrace -\frac{1}{2}\left\langle {\Sigma}_{k} u, u\right\rangle \right\rbrace du &=& \frac{(2\pi )^{(2n-1)/2}}{(\det {\Sigma}_{k})^{1/2}}{\int}_{\mathbb{R}} v^{2}\exp \left\lbrace -\frac{1}{2}v^{2} \right\rbrace dv\frac{1}{{\sigma_{j}^{2}}} \\ &=& \frac{(2\pi )^{n}}{(\det {\Sigma}_{k})^{1/2}}\frac{1}{{\sigma_{j}^{2}}}, \end{array} $$
(56)

where \({\sigma _{j}^{2}}:=\text {Var}\left ({B_{s_{j}}^{H_{k}}\left \vert B_{s_{1}}^{H_{k}}...,B_{s_{2n}}^{H_{k}}\text { without }B_{s_{j}}^{H_{k}} \right .}\right ).\)

Subsequently, we aim at the application of the strong local non-determinism property of the fractional Brownian motions, cf. Lemma 2.4, i.e. for all 0 < r < t ≤ T exists a constant \(\mathfrak {K}_{H_{k}}\) depending on Hk and T such that

$$ \text{Var}\left( {B_{t}^{H_{k}}\left\vert B_{s}^{H_{k}},\left\vert t-s\right\vert \geq r \right.}\right) \geq \mathfrak{K}_{H_{k}} r^{2H_{k}}. $$

Hence, we get due to Lemmas C.5 and C.6 that

$$ (\det {\Sigma}_{k}(s))^{1/2}\geq \mathfrak{K}_{H_{k}}^{\frac{(2n-1)}{2}}\left\vert s_{1}\right\vert^{H_{k}}\left\vert s_{2}-s_{1}\right\vert^{H_{k}}...\left\vert s_{2n}-s_{2n-1}\right\vert^{H_{k}}, $$
(57)

and

$$ \begin{array}{@{}rcl@{}} {\sigma_{1}^{2}} &\geq& \mathfrak{K}_{H_{k}} \left\vert s_{2} - s_{1} \right\vert^{2H_{k}}, \\ {\sigma_{j}^{2}} &\geq& \mathfrak{K}_{H_{k}} \min \left\lbrace \left\vert s_{j}-s_{j-1}\right\vert^{2H_{k}},\left\vert s_{j+1}-s_{j}\right\vert^{2H_{k}}\right\rbrace, ~ 2\leq j \leq 2n-1, \\ \sigma_{2n}^{2} &\geq& \mathfrak{K}_{H_{k}} \left\vert s_{2n}-s_{2n-1}\right\vert^{2H_{k}}. \end{array} $$

Thus,

$$ \begin{array}{@{}rcl@{}} \prod\limits_{j=1}^{2n}\sigma_{j}^{-2\alpha_{[\sigma (j)]}^{(k)}} \leq \mathfrak{K}_{H_{k}}^{-2 \vert \alpha^{(k)} \vert} T^{4 H_{k} \vert \alpha^{(k)} \vert} \vert {\Delta} s \vert^{-2H_{k} \alpha_{[\sigma({\Delta})]}^{(k)}}. \end{array} $$
(58)

Concluding from Eqs. 54, 55, 56, and 58 we have that

$$ \begin{array}{@{}rcl@{}} \text{perm}{(A_{k})} &\leq& \left( 2\left\vert \alpha^{(k)}\right\vert\right)! \prod\limits_{i=1}^{2\left\vert \alpha^{(k)}\right\vert }a_{i,i}^{(k)} \\ &\leq& \left( 2\left\vert \alpha^{(k)}\right\vert \right)! \prod\limits_{j=1}^{2n} \left( (\det {\Sigma}_{k})^{1/2} \frac{1}{(2\pi )^{n}}\frac{(2\pi )^{n}}{(\det {\Sigma}_{k})^{1/2}}\frac{1}{{\sigma_{j}^{2}}} \right)^{\alpha_{[\sigma (j)]}^{(k)}} \\ &\leq& \left( 2\left\vert \alpha^{(k)}\right\vert \right)! \mathfrak{K}_{H_{k}}^{-2 \vert \alpha^{(k)} \vert} T^{4 H_{k} \vert \alpha^{(k)} \vert} \vert {\Delta} s \vert^{-2H_{k} \alpha_{[\sigma({\Delta})]}^{(k)}}. \end{array} $$

Consequently,

$$ \begin{array}{@{}rcl@{}} \mathbb{E}\left[\prod\limits_{j=1}^{2n}\left\vert \left\langle {\Sigma}_{k}^{-1/2}Z, \widetilde{e}_{j} \right\rangle\right\vert^{\alpha_{\lbrack \sigma (j)}^{(k)}}\right] \leq \sqrt{\left( 2\left\vert \alpha^{(k)}\right\vert \right)!} \mathfrak{K}_{H_{k}}^{-\vert \alpha^{(k)} \vert} T^{2 H_{k} \vert \alpha^{(k)}\vert} \vert {\Delta} s \vert^{-H_{k} \alpha_{[\sigma({\Delta})]}^{(k)}}. \end{array} $$

Therefore we get from Eqs. 50, 51, 52, 53, and 57 that

$$ \begin{array}{@{}rcl@{}} &&\mathbb{E}\left[{\left\vert {\Lambda}_{\alpha }^{f}(t,z)\right\vert^{2}}\right] \\ &&\quad \leq (2\pi)^{-2dn} \sum\limits_{\sigma \in \mathcal{S}(n,n)}{\int}_{{\Delta}_{0,t}^{2n}}\left\vert f_{\sigma }(s,z)\right\vert \prod\limits_{k=1}^{d} \left( {\int}_{\mathbb{R}^{2n}}\left\vert u^{(k)}\right\vert^{\alpha^{(k)}} e^{-\frac{1}{2\mathfrak{K}_{H_{k}}}\left\langle {\Sigma}_{k} u^{(k)},u^{(k)}\right\rangle} du^{(k)} \right) ds \\ &&\quad \leq (2\pi)^{-dn} \sum\limits_{\sigma \in \mathcal{S}(n,n)} {\int}_{{\Delta}_{0,t}^{2n}} \left\vert f_{\sigma }(s,z)\right\vert \prod\limits_{k=1}^{d} \left( \frac{\mathfrak{K}_{H_{k}}^{n+\vert \alpha^{(k)}\vert}}{\left( \det {\Sigma}_{k}(s) \right)^{\frac{1}{2}}} \mathbb{E}\!\left[{ \prod\limits_{j=1}^{2n} \left\vert \left\langle {\Sigma}_{k}^{-\frac{1}{2}} Z, \widetilde{e}_{j} \right\rangle \right\vert^{\alpha_{\sigma(j)}^{(k)}}} \right]\right) \!ds \\ &&\quad \leq (2\pi)^{-dn} \sum\limits_{\sigma \in \mathcal{S}(n,n)}{\int}_{{\Delta}_{0,t}^{2n}}\left\vert f_{\sigma }(s,z)\right\vert \left( \prod\limits_{k=1}^{d} \vert {\Delta} s \vert^{-H_{k}} \mathfrak{K}_{H_{k}}^{\vert \alpha^{(k)}\vert + \frac{1}{2}} \right)\\ &&\qquad \times \prod\limits_{k=1}^{d} \left( \sqrt{(2\left\vert \alpha^{(k)}\right\vert )!} \mathfrak{K}_{H_{k}}^{-\vert \alpha^{(k)} \vert} T^{2 H_{k} \vert \alpha^{(k)} \vert} \vert {\Delta} s \vert^{-H_{k} \alpha_{[\sigma({\Delta})]}^{(k)}} \right) ds \\ &&\quad \leq (2\pi)^{-dn} T^{\frac{\vert \alpha \vert}{6}} \left( \prod\limits_{k=1}^{d} \sqrt{\mathfrak{K}_{H_{k}}} \sqrt{\left( 2\left\vert \alpha^{(k)}\right\vert \right)!} \right) \sum\limits_{\sigma \in \mathcal{S}(n,n)} {\int}_{{\Delta}_{0,t}^{2n}} \left\vert f_{\sigma }(s,z)\right\vert \vert {\Delta} s \vert^{- H \left( 1 + \alpha_{[\sigma({\Delta})]} \right)} ds. \end{array} $$

Since \(\sup _{k \geq 1} \mathfrak {K}_{H_{k}} \in (0,1)\), inequality Eq. 47 holds.

Next we prove the estimate Eq. 48. With inequality Eq. 47, we get that

$$ \begin{array}{@{}rcl@{}} &&\mathbb{E}\left[\left|{{\int}_{(\mathbb{R}^{d})^{n}}{\Lambda}_{\alpha}^{{\varkappa} f}(\theta ,t,z)dz}\right|\right] \leq {\int}_{(\mathbb{R}^{d})^{n}} \mathbb{E}\left[\left|{{\Lambda}_{\alpha}^{{\varkappa} f}(\theta ,t,z)}\right|^{2}\right]^{\frac{1}{2}} dz \\ &&\quad \leq \frac{T^{\frac{\vert \alpha \vert}{12}}}{\sqrt{2\pi}^{dn}} {\int}_{(\mathbb{R}^{d})^{n}}({\Psi}_{\alpha }^{{\varkappa} f}(\theta,t,z,H,d))^{\frac{1}{2}}dz. \end{array} $$

Taking the supremum over [0,T] with respect to each function fj, i.e.

$$ \left\vert f_{[\sigma (j)]}(s_{j},z_{[\sigma (j)]})\right\vert \leq \underset{s_{j}\in [0,T]}{\sup}\left\vert f_{[\sigma (j)]}(s_{j},z_{[\sigma(j)]})\right\vert , ~ j=1,...,2n, $$

yields that

$$ \begin{array}{@{}rcl@{}} &&\mathbb{E}\left[\left|{{\int}_{(\mathbb{R}^{d})^{n}}{\Lambda}_{\alpha}^{{\varkappa} f}(\theta ,t,z)dz}\right|\right] \\ &&~\leq \frac{T^{\frac{\vert \alpha \vert}{12}}}{\sqrt{2\pi}^{dn}} \underset{\sigma \in \mathcal{S}(n,n)}{\max}{\int}_{(\mathbb{R}^{d})^{n}}\left( \prod\limits_{j=1}^{2n}\left\Vert f_{[\sigma (j)]}(\cdot,z_{[\sigma (j)]})\right\Vert_{L^{\infty }([0,T])}\right)^{\frac{1}{2}}dz \\ &&~\times \left( \prod\limits_{k=1}^{d}\sqrt{(2\left\vert \alpha^{(k)}\right\vert )!}\sum\limits_{\sigma \in \mathcal{S}(n,n)}{\int}_{{\Delta}_{\theta,t}^{2n}}\left\vert {\varkappa}_{\sigma }(s)\right\vert \vert {\Delta} s \vert^{- H \left( 1 + \alpha_{[\sigma ({\Delta})]} \right)} ds \right)^{\frac{1}{2}} \\ &&~= \frac{T^{\frac{\vert \alpha \vert}{12}}}{\sqrt{2\pi}^{dn}} \underset{\sigma \in \mathcal{S}(n,n)}{\max}{\int}_{(\mathbb{R}^{d})^{n}}\left( \prod\limits_{j=1}^{2n}\left\Vert f_{[\sigma (j)]}(\cdot,z_{[\sigma (j)]})\right\Vert_{L^{\infty }([0,T])}\right)^{\frac{1}{2}} dz ~({\Psi}_{\alpha }^{{\varkappa} }(\theta, t, H, d))^{\frac{1}{2}} \\ &&~= \frac{T^{\frac{\vert \alpha \vert}{12}}}{\sqrt{2\pi}^{dn}} {\int}_{(\mathbb{R}^{d})^{n}}\prod\limits_{j=1}^{n}\left\Vert f_{j}(\cdot ,z_{j})\right\Vert_{L^{\infty }([0,T])}dz ~ ({\Psi}_{\alpha }^{{\varkappa} }(\theta, t, H, d))^{\frac{1}{2}} \\ &&~= \frac{T^{\frac{\vert \alpha \vert}{12}}}{\sqrt{2\pi}^{dn}} \left( \prod\limits_{j=1}^{n}\left\Vert f_{j} \right\Vert_{L^{1}(\mathbb{R}^{d};L^{\infty }([0,T]))} \right) ({\Psi}_{\alpha }^{{\varkappa} }(\theta, t, H, d))^{\frac{1}{2}}. \end{array} $$

Finally, we show the integration by parts formula Eq. 49. Note that a priori one cannot interchange the order of integration in Eq. 46, since e.g. for m = 1, f ≡ 1 one gets an integral of the Donsker-Delta function which is not a random variable in the usual sense. Therefore, we define for R > 0,

$$ \begin{array}{@{}rcl@{}} {\Lambda}^{f}_{\alpha,R} (\theta,t,z) := (2\pi)^{-dn} {\int}_{B(0,R)} {\int}_{{\Delta}^{n}_{\theta,t}} \prod\limits_{j=1}^{n} f_{j}(s_{j},z_{j}) (-iu_{j})^{\alpha_{j}} e^{-i \langle u_{j}, \widehat{B}_{s_{j}}^{d,H}-z_{j}\rangle } ds dv, \end{array} $$

where \(B(0,R):=\{v\in (\mathbb {R}^{d})^{n} : |v|<R\}\). This yields

$$ |{\Lambda}^{f}_{\alpha,R} (\theta,t,z)| \leq C_{R} {\int}_{{\Delta}^{n}_{\theta,t}} \prod\limits_{j=1}^{n} |f_{j}(s_{j}, z_{j})| ds $$

for a sufficient constant CR. Under the assumption that the above right-hand side is integrable over \((\mathbb {R}^{d})^{n}\), similar computations as above show that \({\Lambda }^{f}_{\alpha ,R}(\theta ,t,z)\to {\Lambda }^{f}_{\alpha } (\theta ,t,z)\) in L2(Ω) as \(R\to \infty \) for all 𝜃,t and z. By Lebesgue’s dominated convergence theorem and the fact that the Fourier transform is an automorphism on the Schwarz space, we obtain

$$ \begin{array}{@{}rcl@{}} &&{\int}_{(\mathbb{R}^{d})^{n}} {\Lambda}^{f}_{\alpha}(\theta,t,z) dz = \underset{R\to \infty}{\lim} {\int}_{(\mathbb{R}^{d})^{n}} {\Lambda}^{f}_{\alpha, R} (\theta,t,z)dx\\ &&~ = \underset{R\to \infty}{\lim} (2\pi)^{-dn}{\int}_{(\mathbb{R}^{d})^{n}} {\int}_{B(0,R)} {\int}_{{\Delta}_{\theta,t}^{n}} \prod\limits_{j=1}^{n} f_{j}(s_{j}, z_{j}) (-iu_{j})^{\alpha_{j}} e^{-i \left\langle u_{j}, \widehat{B}_{s_{j}}^{d,H}-z_{j} \right\rangle} dzduds\\ &&~ = \underset{R\to \infty}{\lim} {\int}_{{\Delta}_{\theta,t}^{n}} {\int}_{B(0,R)} (2\pi)^{-dn} {\int}_{(\mathbb{R}^{d})^{n}} \prod\limits_{j=1}^{n} f_{j}(s_{j}, z_{j})e^{i \langle u_{j},z_{j} \rangle} dz (-iu_{j})^{\alpha_{j}} e^{-i \left\langle u_{j}, \widehat{B}_{s_{j}}^{d,H} \right\rangle} duds\\ &&~ = \underset{R\to \infty}{\lim} {\int}_{{\Delta}_{\theta,t}^{n}} {\int}_{B(0,R)} \prod\limits_{j=1}^{n} \widehat{f}_{j}(s,-u_{j}) (-iu_{j})^{\alpha_{j}} e^{-i \left\langle u_{j}, \widehat{B}_{s_{j}}^{d,H} \right\rangle} duds\\ &&~ = {\int}_{{\Delta}_{\theta,t}^{n}} D^{\alpha} f\left( s,\widehat{B}_{s}^{d,H}\right)ds \end{array} $$

which is exactly the integration by parts formula Eq. 49. □

Applying Theorem B.1 we obtain the following crucial estimate (compare [1, 2, 6], and [7]):

Proposition B.2

Let the functions f and ϰ be defined as in Eqs. 42 and 43, respectively. Further, let \( 0\leq \theta ^{\prime } <\theta <t \leq T\) and for some m ≥ 1

$$ {\varkappa}_{j}(s)=(K_{H_{m}}(s,\theta )-K_{H_{m}}(s,\theta^{\prime}))^{\varepsilon_{j}},~\theta <s<t, $$

for every j = 1,...,n with \((\varepsilon _{1},...,\varepsilon _{n})\in \{0,1\}^{n}\). Let \(\alpha \in ({\mathbb {N}_{0}^{d}})^{n}\) be a multi-index. Assume there exists δ such that

$$ \begin{array}{@{}rcl@{}} -\sum\limits_{k=1}^{d} H_{k} \left( 1+2\alpha_{j}^{(k)}\right)+\left( H_{m} - \frac{1}{2} - \gamma_{m}\right)\geq \delta >-1 \end{array} $$
(59)

for all \(j= 1, {\dots } n\) and d ≥ 1, where γm ∈ (0,Hm) is sufficiently small. Then there exist constants CT (depending on T) and Kd,H (depending on d and H), such that for any 0 ≤ 𝜃 < t ≤ T we have

$$ \begin{array}{@{}rcl@{}} &&\mathbb{E}\left[\left|{{\int}_{{\Delta}_{\theta ,t}^{n}}\left( \prod\limits_{j=1}^{n} D^{\alpha_{j}}f_{j}(s_{j}, \widehat{B}_{s_{j}}){\varkappa}_{j}(s_{j})\right) ds}\right|\right] \\ &&~ \leq \frac{K_{d,H}^{n} \cdot T^{\frac{\vert \alpha \vert}{12}}}{\sqrt{2\pi}^{dn}} \left( C_{T} \left( \frac{\theta -\theta^{\prime}}{\theta \theta^{\prime}}\right)^{\gamma_{m}} \theta^{(H_{m}-\frac{1}{2} - \gamma_{m})}\right)^{{\sum}_{j=1}^{n} \varepsilon_{j}} \prod\limits_{j=1}^{n} \left\Vert f_{j}(\cdot ,z_{j})\right\Vert_{L^{1}(\mathbb{R}^{d};L^{\infty }([0,T]))} \\ &&~ \times \frac{\left( {\prod}_{k=1}^{d} \left( 2\left\vert \alpha^{(k)}\right\vert\right)!\right)^{\frac{1}{4}}(t-\theta )^{-{\sum}_{k=1}^{d} H_{k} \left( n+2\left\vert \alpha^{(k)}\right\vert \right)+\left( H_{m}-\frac{1}{2}-\gamma_{m}\right){\sum}_{j=1}^{n} \varepsilon_{j}+n}}{\Gamma(2n - {\sum}_{k=1}^{d}H_{k}(2n+4\left\vert \alpha^{(k)}\right\vert )+2(H_{m} - \frac{1}{2}-\gamma_{m}){\sum}_{j=1}^{n} \varepsilon_{j})^{\frac{1}{2}}}. \end{array} $$

In order to prove this result we need the following two auxiliary results.

Lemma B.3

Let \(H \in \left (0,\frac {1}{2}\right )\) and t ∈ [0,T] be fixed. Then, there exists \(\beta \in \left (0,\frac {1}{2}\right )\) and a constant C > 0 independent of H such that

$$ \begin{array}{@{}rcl@{}} {{\int}_{0}^{t}} {{\int}_{0}^{t}} \frac{|K_{H}(t, \theta^{\prime}) - K_{H}(t,\theta)|^{2}}{|\theta^{\prime}-\theta|^{1+2\beta}}d\theta d\theta^{\prime} \leq C < \infty. \end{array} $$

Proof

Let \(0 \leq \theta ^{\prime }<\theta \leq t\) be fixed. Write

$$ K_{H} (t,\theta) - K_{H}(t,\theta^{\prime}) = c_{H}\left[f_{t}(\theta) - f_{t}(\theta^{\prime}) + \left( \frac{1}{2}-H\right) \left( g_{t}(\theta) - g_{t}(\theta^{\prime})\right)\right], $$

where \(f_{t} (\theta ):= \left (\frac {t}{\theta } \right )^{H-\frac {1}{2}} (t-\theta )^{H-\frac {1}{2}}\) and \(g_{t}(\theta ) := {\int \limits }_{\theta }^{t} \frac {f_{u} (\theta )}{u}du\).

We continue with the estimation of \(K_{H} (t,\theta ) - K_{H}(t,\theta ^{\prime })\). First, observe that there exists a constant 0 < C < 1 such that

$$ \frac{y^{-\alpha} -x^{-\alpha}}{(x-y)^{\gamma}} \leq C y^{-\alpha-\gamma}, $$
(60)

for every \(0<y<x<\infty \) and \(\alpha :=\left (\frac {1}{2}-H\right ) \in \left (0,\frac {1}{2}\right )\) as well as \(0 < \gamma < \frac {1}{2}-\alpha \). Indeed, rewriting Eq. 60 yields using the substitution \(z:= \frac {x}{y}\), \(z\in (1,\infty )\),

$$ \begin{array}{@{}rcl@{}} \frac{y^{-\alpha} -x^{-\alpha}}{(x-y)^{\gamma}} y^{\alpha + \gamma} = \frac{1-z^{-\alpha}}{(z-1)^{\gamma}} =: g(z). \end{array} $$

Furthermore, since α + γ < 1 we get that

$$ \begin{array}{@{}rcl@{}} \underset{z\to 1}{\lim} g(z) = \underset{z\to 1}{\lim} \frac{1-z^{-\alpha}}{(z-1)^{\gamma}} = \underset{z\to 1}{\lim} \frac{1+\alpha z^{-\alpha-1}}{\gamma(z-1)^{\gamma-1}} = 0, \end{array} $$

and

$$ \begin{array}{@{}rcl@{}} \underset{z\to \infty}{\lim} g(z) = 0. \end{array} $$

Moreover, for \(2 \leq z \leq \infty \) we get the upper bound

$$ \begin{array}{@{}rcl@{}} 0 \leq g(z) \leq \frac{1-z^{-\alpha}}{(z-1)^{\gamma}} < \frac{1}{1} = 1, \end{array} $$

and for 1 < z < 2 we have that

$$ \begin{array}{@{}rcl@{}} g(z) = \frac{z^{\alpha}-1}{(z-1)^{\gamma} z^{\alpha}} < \frac{z-1}{(z-1)^{\gamma} (z-1)^{\alpha}} = (z-1)^{1-\gamma-\alpha} \leq 1. \end{array} $$

This shows inequality Eq. 60 which then implies for 0 < γ < H that

$$ \begin{array}{@{}rcl@{}} f_{t}(\theta) - f_{t}(\theta^{\prime}) &=& \left( \frac{t}{\theta} (t-\theta)\right)^{H-\frac{1}{2}}-\left( \frac{t}{\theta^{\prime}} (t-\theta^{\prime})\right)^{H-\frac{1}{2}} \\ &&\lesssim \left( \frac{t}{\theta}(t-\theta)\right)^{H-\frac{1}{2} -\gamma}t^{2\gamma }\frac{(\theta-\theta^{\prime})^{\gamma }}{(\theta \theta^{\prime})^{\gamma }} \lesssim \left( t-\theta \right)^{H-\frac{1}{2}-\gamma} \frac{(\theta -\theta^{\prime})^{\gamma}}{(\theta \theta^{\prime})^{\gamma}}. \end{array} $$

Further,

$$ \begin{array}{@{}rcl@{}} g_{t}(\theta )-g_{t}(\theta^{\prime}) &=& {\int}_{\theta }^{t}\frac{f_{u}(\theta)-f_{u}(\theta^{\prime})}{u}du-{\int}_{\theta^{\prime}}^{\theta }\frac{f_{u}(\theta^{\prime})}{u}du \\ &\leq& {\int}_{\theta }^{t}\frac{f_{u}(\theta )-f_{u}(\theta^{\prime})}{u}du \\ &\lesssim& \frac{(\theta -\theta^{\prime})^{\gamma }}{(\theta \theta^{\prime})^{\gamma }}{\int}_{\theta }^{t}\frac{(u-\theta )^{H-\frac{1}{2}-\gamma }}{u}du \\ &\leq& \frac{(\theta -\theta^{\prime})^{\gamma }}{(\theta \theta^{\prime})^{\gamma }} \theta^{H-\frac{1}{2}-\gamma }{\int}_{1}^{\infty }\frac{(v-1)^{H-\frac{1}{2} -\gamma }}{v} dv \\ &\lesssim& \frac{(\theta-\theta^{\prime})^{\gamma }}{(\theta \theta^{\prime})^{\gamma }}\theta^{H-\frac{1}{2}-\gamma } \\ &\lesssim& \frac{(\theta -\theta^{\prime})^{\gamma }}{(\theta \theta^{\prime})^{\gamma }}\theta^{H-\frac{1}{2}-\gamma }(t-\theta )^{H-\frac{1}{2} - \gamma}. \end{array} $$

Consequently, we get for γ ∈ (0,H), \(0<\theta ^{\prime }<\theta <t\leq T\), that

$$ K_{H}(t,\theta)-K_{H}(t,\theta^{\prime})\leq C \cdot c_{H} \frac{(\theta-\theta^{\prime})^{\gamma }}{(\theta \theta^{\prime})^{\gamma }}\theta^{H-\frac{1}{2} - \gamma }(t-\theta )^{H-\frac{1}{2}-\gamma }, $$

where C > 0 is a constant merely depending on T. Thus

$$ \begin{array}{@{}rcl@{}} &&{{\int}_{0}^{t}}{\int}_{0}^{\theta }\frac{(K_{H}(t,\theta)-K_{H}(t,\theta^{\prime}))^{2}}{|\theta -\theta^{\prime}|^{1+2\beta }}d\theta^{\prime}d\theta \\ &&~~~~~\lesssim {{\int}_{0}^{t}}{\int}_{0}^{\theta}\frac{|\theta -\theta^{\prime}|^{-1-2\beta +2\gamma }}{(\theta \theta^{\prime})^{2\gamma }}\theta^{2H-1-2\gamma }(t-\theta)^{2H-1-2\gamma }d\theta^{\prime}d\theta \\ &&~~~~~ = {{\int}_{0}^{t}}\theta^{2H-1-4\gamma }(t-\theta )^{2H-1-2\gamma }{\int}_{0}^{\theta}|\theta -\theta^{\prime}|^{-1-2\beta +2\gamma }(\theta^{\prime})^{-2\gamma}d\theta^{\prime}d\theta \\ &&~~~~= {{\int}_{0}^{t}}\theta^{2H-1-4\gamma -2\beta}(t-\theta )^{2H-1-2\gamma }\frac{\Gamma(-2\beta +2\gamma ){\Gamma} (-2\gamma +1)}{\Gamma (-2\beta +1)} d\theta \\ &&~~~\lesssim {{\int}_{0}^{t}}\theta^{2H-1-4\gamma -2\beta }(t-\theta )^{2H-1-2\gamma }d\theta \\ &&~= \frac{\Gamma (2H-2\gamma ){\Gamma} (2H-4\gamma -2\beta )}{\Gamma(4H-6\gamma -2\beta )}t^{4H-6\gamma -2\beta -1}<\infty, \end{array} $$

for sufficiently small γ and β. On the other hand, we have that

$$ \begin{array}{@{}rcl@{}} &&{{\int}_{0}^{t}}{\int}_{\theta}^{t}\frac{(K_{H}(t,\theta)-K_{H}(t,\theta^{\prime}))^{2}}{|\theta -\theta^{\prime}|^{1+2\beta }}d\theta^{\prime}d\theta \\ &&~~~~~~~\lesssim {{\int}_{0}^{t}}\theta^{2H-1-4\gamma }(t-\theta)^{2H-1-2\gamma }{\int}_{\theta}^{t}\frac{|\theta -\theta^{\prime}|^{-1-2\beta +2\gamma }}{(\theta^{\prime})^{2\gamma }}d\theta^{\prime}d\theta \\ &&~~~~~~~\leq {{\int}_{0}^{t}}\theta^{2H-1-6\gamma }(t-\theta)^{2H-1-2\gamma } {\int}_{\theta}^{t} |\theta -\theta^{\prime}|^{-1-2\beta +2\gamma } d\theta^{\prime}d\theta \\ &&~~~~~~~\lesssim {{\int}_{0}^{t}}\theta^{2H-1-6\gamma }(t-\theta )^{2H-1 -2\beta }d\theta \lesssim t^{4H-6\gamma -2\beta -1}. \end{array} $$

Therefore,

$$ \begin{array}{@{}rcl@{}} {{\int}_{0}^{t}}{{\int}_{0}^{t}}\frac{(K_{H}(t,\theta )-K_{H}(t,\theta^{\prime}))^{2}}{|\theta -\theta^{\prime}|^{1+2\beta }}d\theta^{\prime}d\theta <\infty . \end{array} $$

□

Lemma B.4

Let \(H \in \left (0, \frac {1}{2} \right )\), 0 ≤ 𝜃 < t ≤ T and \((\varepsilon _{1},\dots , \varepsilon _{n})\in \{0,1\}^{n}\) be fixed. Assume \(w_{j}+\left (H-\frac {1}{2}-\gamma \right ) \varepsilon _{j}>-1\) for all \(j=1,\dots ,n\). Then there exists a finite constant CH,T > 0 depending only on H and T such that for γ ∈ (0,H)

$$ \begin{array}{@{}rcl@{}} &&{\int}_{{\Delta}_{\theta,t}^{n}} \prod\limits_{j=1}^{n} (K_{H}(s_{j},\theta) - K_{H}(s_{j},\theta^{\prime}))^{\varepsilon_{j}} |s_{j}-s_{j-1}|^{w_{j}} ds \\ &&~\leq \left( C_{H,T} \left( \frac{\theta-\theta^{\prime}}{\theta \theta^{\prime}}\right)^{\gamma} \theta^{\left( H-\frac{1}{2} - \gamma\right)} \right)^{{\sum}_{j=1}^{n} \varepsilon_{j}} {\Pi}_{\gamma}(n) (t-\theta)^{{\sum}_{j=1}^{n} \left( w_{j} + \left( H-\frac{1}{2}-\gamma\right) \varepsilon_{j} \right) +n}, \end{array} $$

where

$$ \begin{array}{@{}rcl@{}} {\Pi}_{\gamma}(m):= \frac{{\prod}_{j=1}^{n}{\Gamma} (w_{j} +1)}{\Gamma\left( {\sum}_{j=1}^{n} w_{j} + \left( H-\frac{1}{2}-\gamma \right){\sum}_{j=1}^{n} \varepsilon_{j} + n \right)}. \end{array} $$
(61)

Proof

Recall, that for given exponents a,b > − 1 and some fixed sj+ 1 > sj we have

$$ {\int}_{\theta}^{s_{j+1}} (s_{j+1}-s_{j})^{a} (s_{j}-\theta)^{b} ds_{j} =\frac{\Gamma\left( a+1\right){\Gamma} \left( b+1\right)}{\Gamma \left( a+b+2\right)} (s_{j+1}-\theta)^{a+b+1}. $$

Due to Lemma B.3 we have that for every γ ∈ (0,H), \(0<\theta ^{\prime }<\theta <s_{j}\leq T\),

$$ \begin{array}{@{}rcl@{}} K_{H}(s_{j},\theta )-K_{H}(s_{j},\theta^{\prime})\leq C_{H,T} \frac{(\theta-\theta^{\prime})^{\gamma }}{(\theta \theta^{\prime})^{\gamma }}\theta^{H- \frac{1}{2}-\gamma }(s_{j}-\theta )^{H-\frac{1}{2}-\gamma }, \end{array} $$

for CH,T := C ⋅ cH, where cH is the constant in Eq. 14 and C > 0 is some constant merely depending on T. Consequently, we get that

$$ \begin{array}{@{}rcl@{}} &&{\int}_{\theta}^{s_{2}} |K_{H}(s_{1},\theta)-K_{H}(s_{1},\theta^{\prime})|^{\varepsilon_{1}} |s_{2}-s_{1}|^{w_{2}}|s_{1}-\theta|^{w_{1}}ds_{1} \\ &&~~~~~~\leq C_{H,T}^{\varepsilon_{1}} \frac{(\theta-\theta^{\prime})^{\gamma\varepsilon_{1} }}{(\theta \theta^{\prime})^{\gamma\varepsilon_{1}}}\theta^{\left( H-\frac{1}{2}-\gamma\right)\varepsilon_{1}}{\int}_{\theta}^{s_{2}}|s_{2}-s_{1}|^{w_{2}}|s_{1}-\theta|^{w_{1}+\left( H-\frac{1}{2}-\gamma\right)\varepsilon_{1}}ds_{1} \\ &&~~~~~~= C_{H,T}^{\varepsilon_{1}} \frac{(\theta-\theta^{\prime})^{\gamma\varepsilon_{1} }}{(\theta \theta^{\prime})^{\gamma\varepsilon_{1}}}\theta^{\left( H-\frac{1}{2}-\gamma\right)\varepsilon_{1} } \frac{\Gamma\left( \hat{w}_{1}\right){\Gamma}\left( \hat{w}_{2}\right)}{\Gamma\left( \hat{w}_{1}+\hat{w}_{2}\right)}(s_{2}-\theta)^{w_{1}+w_{2}+\left( H-\frac{1}{2}-\gamma\right)\varepsilon_{1}+1}, \end{array} $$

where

$$ \hat{w}_{1} := w_{1}+\left( H-\frac{1}{2}-\gamma\right)\varepsilon_{1}+1, \quad \hat{w}_{2}:=w_{2}+1. $$

Noting that

$$ \begin{array}{@{}rcl@{}} \prod\limits_{j=1}^{n-1} \frac{\Gamma \left( {\sum}_{l=1}^{j} w_{l} + \left( H-\frac{1}{2}-\gamma \right){\sum}_{l=1}^{j} \varepsilon_{l} + j\right){\Gamma} \left( w_{j+1}+1\right)}{\Gamma \left( {\sum}_{l=1}^{j+1} w_{l} + \left( H-\frac{1}{2}-\gamma \right){\sum}_{l=1}^{j} \varepsilon_{l} + j + 1 \right)} \leq {\Pi}_{\gamma}(n). \end{array} $$

and iterative integration yields the desired formula. □

Finally, we are able to give the proof of Proposition B.2.

Proof Proof of Proposition B.2

The integration by parts formula Eq. 49 yields that

$$ {\int}_{{\Delta}_{\theta ,t}^{n}}\left( \prod\limits_{j=1}^{n} D^{\alpha_{j}}f_{j}(s_{j},\widehat{B}_{s_{j}}){\varkappa}_{j}(s_{j})\right) ds={\int}_{\mathbb{R}^{dn}}{\Lambda}_{\alpha}^{{\varkappa} f}(\theta ,t,z)dz. $$

Taking the expectation and applying Theorem B.1 we get that

$$ \begin{array}{@{}rcl@{}} &&\mathbb{E}\left[\left|{{\int}_{{\Delta}_{\theta ,t}^{n}}\left( \prod\limits_{j=1}^{n} D^{\alpha_{j}}f_{j}(s_{j}, \widehat{B}_{s_{j}}){\varkappa}_{j}(s_{j})\right) ds}\right|\right] \\ &&\quad \leq \frac{T^{\frac{\vert \alpha \vert}{12}}}{\sqrt{2\pi}^{dn}} ({\Psi}_{\alpha }^{{\varkappa} }(\theta, t, H, d))^{\frac{1}{2}} \prod\limits_{j=1}^{n} \left\Vert f_{j}\right\Vert_{L^{1}(\mathbb{R}^{d};L^{\infty}([0,T]))}, \end{array} $$

where

$$ \begin{array}{@{}rcl@{}} &&{\Psi}_{\alpha }^{{\varkappa} }(\theta, t, H, d) := \left( \prod\limits_{k=1}^{d}\sqrt{(2\left\vert \alpha^{(k)}\right\vert )!} \right) \\ &&\quad \times\sum\limits_{\sigma \in \mathcal{S}(n,n)}{\int}_{{\Delta}_{0,t}^{2n}} \vert {\Delta} s \vert^{- H \left( 1 + \alpha_{[\sigma({\Delta})]} \right)} \prod\limits_{j=1}^{2n} (K_{H_{m}}(s_{j},\theta)-K_{H_{m}}(s_{j},\theta^{\prime} ))^{\varepsilon_{\lbrack \sigma (j)]}}ds. \end{array} $$

Under the assumption \(-{\sum }_{k=1}^{d}H_{k} (1+ \alpha _{\lbrack \sigma (j)]}^{(k)} + \alpha _{\lbrack \sigma (j-1)]}^{(k)})+(H_{m} - \frac {1}{2}-\gamma _{m})\varepsilon _{\lbrack \sigma (j)]}>-1\) for all j = 1,..., 2n, we can apply Lemma B.4 and thus get

$$ \begin{array}{@{}rcl@{}} &&{\Psi}_{\alpha }^{{\varkappa} }(\theta, t, H, d) \\ &&\quad \leq \sum\limits_{\sigma \in \mathcal{S}(n,n)} \left( C_{T} \left( \frac{\theta -\theta^{\prime}}{\theta \theta^{\prime}}\right)^{\gamma_{m}} \theta^{(H_{m}-\frac{1}{2}-\gamma_{m})} \right)^{{\sum}_{j=1}^{2n} \varepsilon_{[\sigma(j)]}} {\Pi}_{\gamma }(2n) \\ &&\qquad \times \left( \prod\limits_{k=1}^{d}\sqrt{(2\left\vert \alpha^{(k)}\right\vert )!} \right) (t-\theta )^{-{\sum}_{k=1}^{d}H_{k} \left( 2n+4\left\vert \alpha^{(k)}\right\vert \right)+(H_{m}-\frac{1}{2}-\gamma_{m}){\sum}_{j=1}^{2n}\varepsilon_{\lbrack \sigma (j)]}+2n}, \end{array} $$

where πγ(2n) is defined as in Eq. 61. We define the constant Kd,H by

$$ \begin{array}{@{}rcl@{}} K_{d,H} := 2 \underset{j= 1, {\dots} ,2n}{\sup} {\Gamma} \left( 1-\sum\limits_{k=1}^{d} H_{k} \left( 1+ \alpha_{\lbrack \sigma (j)]}^{(k)} + \alpha_{\lbrack \sigma (j-1)]}^{(k)}\right)\right) \end{array} $$
(62)

and thus an upper bound of πγ(2n) is given by

$$ \begin{array}{@{}rcl@{}} {\Pi}_{\gamma }(2n) \leq \frac{K_{d,H}^{2n}}{2^{2n} {\Gamma}\left( -{\sum}_{k=1}^{d} H_{k}\left( 2n+4\left\vert \alpha^{(k)}\right\vert \right)+\left( H_{m} - \frac{1}{2}-\gamma_{m} \right){\sum}_{j=1}^{2n}\varepsilon_{\lbrack \sigma(j)]}+2n \right)}. \end{array} $$

Note that \({\sum }_{j=1}^{2n}\varepsilon _{\lbrack \sigma (j)]} = 2{\sum }_{j=1}^{n}\varepsilon _{j}\) and

$$ \begin{array}{@{}rcl@{}} \# \mathcal{S}(n,n) = \dbinom{2n}{n} = \frac{2^{2n}}{\sqrt{\pi}} \frac{\Gamma\left( n+\frac{1}{2} \right)}{\Gamma(n+1)} \leq 2^{2n}. \end{array} $$

Hence, it follows that

$$ \begin{array}{@{}rcl@{}} &&({\Psi}_{k}^{{\varkappa} }(\theta, t, H, d))^{\frac{1}{2}} \\ &&\quad \leq K_{d,H}^{n} \left( C_{T} \left( \frac{\theta -\theta^{\prime}}{\theta \theta^{\prime}}\right)^{\gamma_{m} }\theta^{(H_{m}-\frac{1}{2}-\gamma_{m})}\right)^{{\sum}_{j=1}^{n} \varepsilon_{j}} \\ &&\qquad \times \frac{\left( {\prod}_{k=1}^{d}\left( 2\left\vert \alpha^{(k)}\right\vert \right)!\right)^{\frac{1}{4}}(t-\theta )^{-{\sum}_{k=1}^{d}H_{k} \left( n+2\left\vert \alpha^{(k)}\right\vert \right)+\left( H_{m}-\frac{1}{2}-\gamma_{m} \right){\sum}_{j=1}^{n} \varepsilon_{j}+n}}{\Gamma\left( 2n - {\sum}_{k=1}^{d} H_{k} \left( 2n+4\left\vert \alpha^{(k)}\right\vert \right)+2\left( H_{m} - \frac{1}{2}-\gamma_{m} \right){\sum}_{j=1}^{n} \varepsilon_{j} \right)^{\frac{1}{2}}}, \end{array} $$

□

Proposition B.5

Let the functions f and ϰ be defined as in Eqs. 42 and 43, respectively. Let 0 ≤ 𝜃 < t ≤ T and

$$ {\varkappa}_{j}(s)=(K_{H_{m}}(s,\theta ))^{\varepsilon_{j}},\theta <s<t, $$

for every \(j=1, \dots , n\) with \((\varepsilon _{1}, \dots , \varepsilon _{n})\in \{0,1\}^{n}\). Let \(\alpha \in ({\mathbb {N}_{0}^{d}})^{n}\) be a multi-index and suppose that there exists δ such that

$$ -\sum\limits_{k=1}^{d} H_{k} \left( 1+2\alpha_{j}^{(k)}\right)+\left( H_{m}-\frac{1}{2}\right) \geq \delta >-1 $$

for all \(j= 1, \dots , n\) and d ≥ 1. Then there exist constants CT (depending on T) and Kd,H (depending on d and H) such that for any 0 ≤ 𝜃 < t ≤ T we have

$$ \begin{array}{@{}rcl@{}} &&\mathbb{E}\left[\left|{{\int}_{{\Delta}_{\theta ,t}^{n}}\left( \prod\limits_{j=1}^{n} D^{\alpha_{j}}f_{j}(s_{j}, \widehat{B}_{s_{j}}){\varkappa}_{j}(s_{j})\right) ds}\right|\right] \\ &&~ \leq \frac{K_{d,H}^{n} \cdot T^{\frac{\vert \alpha \vert}{12}}}{\sqrt{2\pi}^{dn}} \left( C_{T} \theta^{(H_{m}-\frac{1}{2})}\right)^{{\sum}_{j=1}^{n} \varepsilon_{j}} \prod\limits_{j=1}^{n} \left\Vert f_{j}(\cdot ,z_{j})\right\Vert_{L^{1}(\mathbb{R}^{d};L^{\infty }([0,T]))} \\ &&\quad \times \frac{\left( {\prod}_{k=1}^{d} \left( 2\left\vert \alpha^{(k)}\right\vert\right)!\right)^{\frac{1}{4}}(t-\theta )^{-{\sum}_{k=1}^{d} H_{k} \left( n+2\left\vert \alpha^{(k)}\right\vert \right)+ \left( H_{m}-\frac{1}{2}\right){\sum}_{j=1}^{n} \varepsilon_{j}+n}}{\Gamma(2n-{\sum}_{k=1}^{d}H_{k}(2n+4\left\vert \alpha^{(k)}\right\vert )+2(H_{m} - \frac{1}{2}){\sum}_{j=1}^{n} \varepsilon_{j})^{\frac{1}{2}}}. \end{array} $$

The proof of Proposition B.5 is similar to the one of Proposition B.2 by using the subsequent lemma instead of Lemma B.4 and thus it is omitted in this manuscript.

Lemma B.6

Let \(H \in \left (0,\frac {1}{2}\right )\), 0 ≤ 𝜃 < t ≤ T and \((\varepsilon _{1},\dots , \varepsilon _{n})\in \{0,1\}^{n}\) be fixed. Assume \(w_{j}+\left (H-\frac {1}{2}\right ) \varepsilon _{j}>-1\) for all \(j=1,\dots ,n\). Then there exists a finite constant CH,T > 0 depending only on H and T such that

$$ \begin{array}{@{}rcl@{}} &&{\int}_{{\Delta}_{\theta,t}^{n}} \prod\limits_{j=1}^{n} (K_{H}(s_{j},\theta))^{\varepsilon_{j}} |s_{j}-s_{j-1}|^{w_{j}} ds \\ &&~\leq \left( C_{H,T} \theta^{\left( H-\frac{1}{2}\right)} \right)^{{\sum}_{j=1}^{n} \varepsilon_{j}} {\Pi}_{0}(n) (t-\theta)^{{\sum}_{j=1}^{n} \left( w_{j} + \left( H-\frac{1}{2}\right) \varepsilon_{j} \right) + n}, \end{array} $$

where π0 is defined in Eq. 61.

Proof

Using similar arguments as in the proof of Lemma B.3 we get the following estimate

$$ |K_{H}(s_{j},\theta)| \leq C_{H,T} |s_{j}-\theta|^{H-\frac{1}{2}}\theta^{H-\frac{1}{2}} $$

for every 0 < 𝜃 < sj < T and CH,T := C ⋅ cH, where cH is the constant in Eq. 14 and C > 0 is some constant merely depending on T. Thus,

$$ \begin{array}{@{}rcl@{}} &&{\int}_{\theta}^{s_{2}} (K_{H}(s_{1},\theta))^{\varepsilon_{1}}|s_{2}-s_{1}|^{w_{2}}|s_{1}-\theta|^{w_{1}}ds_{1} \\ &&\quad \leq C_{H,T}^{\varepsilon_{1}} \theta^{\left( H-\frac{1}{2}\right)\varepsilon_{1}} {\int}_{\theta}^{s_{2}} |s_{2}-s_{1}|^{w_{2}} |s_{1}-\theta|^{w_{1}+\left( H-\frac{1}{2}\right)\varepsilon_{1}}ds_{1} \\ &&\quad = C_{H,T}^{\varepsilon_{1}} \theta^{\left( H-\frac{1}{2}\right)\varepsilon_{1}} \frac{\Gamma\left( w_{1} +\left( H-\frac{1}{2}\right)\varepsilon_{1}+1\right){\Gamma}\left( w_{2}+1\right)}{\Gamma\left( w_{1} + w_{2} + \left( H-\frac{1}{2}\right)\varepsilon_{1}+2\right)}(s_{2}-\theta)^{w_{1}+w_{2}+\left( H-\frac{1}{2}\right)\varepsilon_{1}+1}. \end{array} $$

Proceeding similar to the proof of Lemma B.4 yields the desired estimate. □

Remark B.7

Note that

$$ \prod\limits_{k=1}^{d} \left( 2\left\vert \alpha^{(k)}\right\vert \right)! \leq \sqrt{2\pi}^{d} e^{\frac{\vert \alpha \vert}{2}} \frac{\Gamma\left( \frac{5}{2} \vert \alpha \vert +1\right)}{\sqrt{5 \pi \vert \alpha \vert}}. $$

Indeed, since for n ≥ 1 sufficiently large we have by Stirling’s formula that

$$ \begin{array}{@{}rcl@{}} \sqrt{2\pi n} \left( \frac{n}{e} \right)^{n} \leq n! \leq e^{\frac{1}{12n}} \sqrt{2\pi n} \left( \frac{n}{e} \right)^{n}, \end{array} $$

we get by assuming without loss of generality that |α(k)|≥ 1 for all 1 ≤ k ≤ d, that

$$ \begin{array}{@{}rcl@{}} \prod\limits_{k=1}^{d} \left( 2 \vert \alpha^{(k)} \vert \right)! &\leq& \prod\limits_{k=1}^{d} e^{\frac{1}{24 \vert \alpha^{(k)} \vert}} \sqrt{4 \pi \vert \alpha^{(k)} \vert} \left( \frac{2 \vert \alpha^{(k)} \vert}{e} \right)^{2 \vert \alpha^{(k)} \vert} \\ &\leq& e^{\frac{d}{24}} \sqrt{\frac{8}{5}\pi}^{d} \prod\limits_{k=1}^{d} \left( \frac{5}{2} \vert \alpha^{(k)} \vert \right)^{\frac{\vert \alpha^{(k)} \vert}{2}} \left( \frac{\frac{5}{2} \vert \alpha^{(k)} \vert}{e} \right)^{2 \vert \alpha^{(k)} \vert} \\ &\leq& \sqrt{2\pi}^{d} \prod\limits_{k=1}^{d} \left( \frac{\frac{5}{2} \vert \alpha \vert}{e} \right)^{\frac{5}{2} \vert \alpha^{(k)} \vert} e^{\frac{\vert \alpha^{(k)} \vert}{2}} \\ &\leq& \sqrt{2\pi}^{d} e^{\frac{\vert \alpha \vert}{2}} \left( \frac{\frac{5}{2} \vert \alpha \vert}{e} \right)^{\frac{5}{2} \vert \alpha \vert} \leq \sqrt{2\pi}^{d} e^{\frac{\vert \alpha \vert}{2}} \frac{\Gamma\left( \frac{5}{2} \vert \alpha \vert +1\right)}{\sqrt{5 \pi \vert \alpha \vert}}. \end{array} $$

Appendix C: Technical Results

The following technical result can be found in [26].

Lemma C.1

Assume that X1,...,Xn are real centered jointly Gaussian random variables, and \({\Sigma } =(\mathbb {E}[X_{j}X_{k}])_{1\leq j,k\leq n}\) is the covariance matrix, then

$$ \begin{array}{@{}rcl@{}} \mathbb{E}[|{ X_{1}|\vert ... \vert X_{n}}|] \leq \sqrt{\text{perm}{\Sigma}}, \end{array} $$

where perm (A) is the permanent of a matrix A = (aij)1≤i,j≤n defined by

$$ \begin{array}{@{}rcl@{}} \text{perm}{A}=\sum\limits_{\pi \in \mathcal{S}_{n}} \prod\limits_{j=1}^{n}a_{j,\pi (j)} \end{array} $$

for the symmetric group \(\mathcal {S}_{n}\).

The next lemma corresponds to [12, Lemma 2]:

Lemma C.2

Let Z1,...,Zn be mean zero Gaussian random variables which are linearly independent. Then for any measurable function \(g:\mathbb {R}\longrightarrow \mathbb {R}_{+}\) we have that

$$ \begin{array}{@{}rcl@{}} &{\int}_{\mathbb{R}^{n}}g(v_{1}) e^{-\frac{1}{2} \text{Var}{{\sum}_{j=1}^{n}v_{j}Z_{j}}} dv_{1}...dv_{n} =\frac{(2\pi )^{\frac{n-1}{2}}}{(\det \text{Cov}{Z_{1},...,Z_{n}})^{\frac{1}{2}}}{\int}_{\mathbb{R}} g\left( \frac{v}{\sigma_{1}}\right) e^{-\frac{v^{2}}{2}} dv, \end{array} $$

where \({\sigma _{1}^{2}}:=\text {Var}{Z_{1}\left \vert Z_{2},...,Z_{n}\right .}\).

Remark C.3

Note that here linearly independence is meant in the sense that \(\det \text {Cov}Z_{1},...,\) Zn≠ 0.

Lemma C.4

Let a ∈ ℓp, \(1 \leq p < \infty \). Then, for every n ≥ 1 and d ≥ 1

$$ \begin{array}{@{}rcl@{}} \sum\limits_{k_{1},\dots, k_{n} = 1}^{d} \prod\limits_{j=1}^{n} a_{k_{j}} = \left( \sum\limits_{k=1}^{d} a_{k} \right)^{n}, \end{array} $$
(63)

and

$$ \begin{array}{@{}rcl@{}} \underset{d \to \infty}{\lim} \sum\limits_{k_{1},\dots, k_{n}}^{d} \prod\limits_{j=1}^{n} \vert a_{k_{j}} \vert^{p} = \left( \Vert a \Vert_{\ell^{p}} \right)^{n}. \end{array} $$
(64)

Proof

We proof Eq. 63 by induction. For n = 1 the result holds. Therefore we assume that Eq. 63 holds for n and we show that it also holds for n + 1. Thus, we get by the induction hypothesis that

$$ \begin{array}{@{}rcl@{}} \sum\limits_{k_{1},\dots, k_{n+1} = 1}^{d} \prod\limits_{j=1}^{n+1} a_{k_{j}} &=& \sum\limits_{k_{n+1}=1}^{d} a_{k_{n+1}} \left( \sum\limits_{k_{1},\dots, k_{n} = 1}^{d} \prod\limits_{j=1}^{n} a_{k_{j}} \right) \\ &=& \sum\limits_{k_{n+1}=1}^{d} a_{k_{n+1}} \left( \sum\limits_{k = 1}^{d} a_{k} \right)^{n} = \left( \sum\limits_{k = 1}^{d} a_{k} \right)^{n+1}. \end{array} $$

Equation 64 is an immediate consequence of Eq. 63 and the continuity of the function f(x) = xn for fixed n ≥ 1. □

The subsequent lemmas are due to [4].

Lemma C.5

Let \((X_{1},\dots ,X_{n})\) be a mean-zero Gaussian random vector. Then,

$$ \begin{array}{@{}rcl@{}} \det\left( \text{Cov}\left( {X_{1},\dots,X_{n}}\right)\right) = \text{Var}\left( {X_{1}}\right) \text{Var}\left( {X_{2} \vert X_{1}} {\cdots} \text{Var}({X_{n} \vert X_{n-1},{\dots} ,X_{1}}\right). \end{array} $$

Lemma C.6

For any square integrable random variable X and σ-algebras \(\mathcal {G}_{1} \subset \mathcal {G}_{2}\)

$$ \begin{array}{@{}rcl@{}} \text{Var}\left( X\vert \mathcal{G}{_{1}}\right) \geq \text{Var}\left( {X\vert \mathcal{G}_{2}}\right). \end{array} $$

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baños, D., Bauer, M., Meyer-Brandis, T. et al. Restoration of Well-Posedness of Infinite-Dimensional Singular ODE’s via Noise. Potential Anal (2023). https://doi.org/10.1007/s11118-023-10069-6

Download citation

  • Received: 26 October 2021

  • Accepted: 08 February 2023

  • Published: 07 March 2023

  • DOI: https://doi.org/10.1007/s11118-023-10069-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Malliavin calculus
  • Fractional brownian motion
  • L 2-compactness criterion
  • Strong solutions of SDEs
  • Irregular drift coefficient

Mathematics Subject Classification (2010)

  • 60H10
  • 60H15
  • 60H50
  • 35R15
  • 35R60
  • 34F05
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • Your US state privacy rights
  • How we use cookies
  • Your privacy choices/Manage cookies
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.