Skip to main content
Log in

The Weighted Hp Estimates for Commutators of Fractional Integrals

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

For 0 < α < n, let Iα be the Riesz potential operator, \(b\in L_{\text {loc}}(\mathbb {R}^{n})\). Harboure et al. (Illinois J. Math. 41(4), 676–700 1997) showed that when \(b\in BMO(\mathbb {R}^{n})\), the commutator [b,Iα] may be not bounded from \(H^{1}(\mathbb {R}^{n})\) to \(L^{n/(n-\alpha )}(\mathbb {R}^{n})\). In this paper, the authors show that there are nontrivial subspaces of \(BMO(\mathbb {R}^{n})\), when b belongs to these subspaces, such that [b,Iα] is bounded from \(H_{\omega ^{p}}^{p}(\mathbb {R}^{n})\) to \(L_{\omega ^{q}}^{q}(\mathbb {R}^{n})\), or from \(H_{\omega ^{p}}^{p}(\mathbb {R}^{n})\) to \(H_{\omega ^{q}}^{q}(\mathbb {R}^{n})\) for certain 0 < p ≤ 1 with 1/q = 1/pα/n and \(\omega \in A_{\infty }\). The corresponding results for the commutators of fractional integrals with general homogeneous kernels and Hörmander type kernels are also given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Bernardis, A.L., Lorente, M., Riveros, M.S.: Weighted inequalities for fractional integral operators with kernel satisfying Hörmander type conditions. Math. Inequal. Appl. 14(4), 881–895 (2011)

    MathSciNet  Google Scholar 

  2. Bownik, M., Li, B., Yang, D., Zhou, Y.: Weighted anisotropic Hardy spaces and their applications in boundedness of sublinear operators. Indiana Univ. Math. J. 57(7), 3065–3100 (2008)

    Article  MathSciNet  Google Scholar 

  3. Chanillo, S.: A note on commutators. Indiana Univ. Math. J. 31 (1), 7–16 (1982)

    Article  MathSciNet  Google Scholar 

  4. Cruz-Uribe, D., Fiorenza, A.: Endpoint estimates and weighted norm inequalities for commutators of fractional integrals. Publ. Mat. 47(1), 103–131 (2003)

    Article  MathSciNet  Google Scholar 

  5. Ding, Y., Lee, M., Lin, C.: Fractional integrals on weighted Hardy spaces. J. Math. Anal. Appl. 282(1), 356–368 (2003)

    Article  MathSciNet  Google Scholar 

  6. Ding, Y., Lu, S.: Weighted norm inequalities for fractional integral operators with rough kernel. Canad. J. Math. 50(1), 29–39 (1998)

    Article  MathSciNet  Google Scholar 

  7. Ding, Y., Lu, S.: Higher order commutators for a class of rough operators. Ark. Mat. 37(1), 33–44 (1999)

    Article  MathSciNet  Google Scholar 

  8. Ding, Y., Lu, S., Zhang, P.: Weak estimates for commutators of fractional integral operators. Sci. China Ser. A 44(7), 877–888 (2001)

    Article  MathSciNet  Google Scholar 

  9. García-Cuerva, J.: Weighted Hp spaces. Dissertationes Math. (Rozprawy Mat.) 162, 63 (1979)

    Google Scholar 

  10. García-Cuerva, J., Rubio de Francia, J.L.: Weighted Norm Inequalities and Related Topics, North-Holland Mathematics Studies, vol. 116. North-Holland Publishing Co., Amsterdam (1985)

    Google Scholar 

  11. Guo, W., Lian, J., Wu, H.: The unified theory for the necessity of bounded commutators and applications. J. Geom. Anal. 30(4), 3995–4035 (2020)

    Article  MathSciNet  Google Scholar 

  12. Harboure, E., Segovia, C., Torrea, J.L.: Boundedness of commutators of fractional and singular integrals for the extreme values of p. Illinois J. Math. 41(4), 676–700 (1997)

    Article  MathSciNet  Google Scholar 

  13. Holmes, I., Rahm, R., Spencer, S.: Commutators with fractional integral operators. Studia Math. 233(3), 279–291 (2016)

    MathSciNet  Google Scholar 

  14. Huy, D.Q., Ky, L.D.: Weighted Hardy space estimates for commutators of Calderón-Zygmund operators. Vietnam J. Math. 49(4), 1065–1077 (2021)

    Article  MathSciNet  Google Scholar 

  15. Liang, Y., Ky, L.D., Yang, D.: Weighted endpoint estimates for commutators of Calderón-Zygmund operators. Proc. Amer. Math. Soc. 144(12), 5171–5181 (2016)

    Article  MathSciNet  Google Scholar 

  16. Segovia, C., Torrea, J.L.: Higher order commutators for vector-valued Calderón-Zygmund operators. Trans. Amer. Math. Soc. 336(2), 537–556 (1993)

    MathSciNet  Google Scholar 

  17. Segovia, C., Torrea, J.L.: Weighted inequalities for commutators of fractional and singular integrals. Publ. Mat. 35(1), 209–235 (1991)

    Article  MathSciNet  Google Scholar 

  18. Strömberg, J. O., Wheeden, R.L.: Fractional integrals on weighted Hp and Lp spaces. Trans. Amer. Math. Soc. 287(1), 293–321 (1985)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to the referees for numerous very constructive comments and suggestion. This work is supported by the National Natural Science Foundation of China (Nos. 12171399, 11771358, 11871101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huoxiong Wu.

Ethics declarations

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this section, we give the proofs of Theorems 5.10-5.13.

Proof of Theorem 5.10

By Lemma 2.5, it suffices to show that, for any continuous \((H_{\omega ^{p}}^{p}(\mathbb {R}^{n}),\infty )\)-atom a, there exists a constant C > 0 independent of a such that \(\|T_{\alpha } a\|_{L_{\omega ^{q}}^{q}(\mathbb {R}^{n})}\leq C\). Let a be an \((H_{\omega ^{p}}^{p}(\mathbb {R}^{n}),\infty )\)-atom with supp aB(x0,r). We write

$$ \begin{array}{@{}rcl@{}} \|T_{\alpha}a\|_{L_{\omega^{q}}^{q}(\mathbb R^{n})} &=&\Big({\int}_{\mathbb R^{n}}|T_{\alpha} a(x)|^{q}\omega(x)^{q}dx\Big)^{1/q}\\ &\leq&\Big({\int}_{2B}|T_{\alpha} a(x)|^{q}\omega(x)^{q}dx\Big)^{1/q} +\Big({\int}_{(2B)^{c}}|T_{\alpha} a(x)|^{q}\omega(x)^{q}dx\Big)^{1/q}\\ &=:&K_{1}+K_{2}. \end{array} $$

For K1, it is known that ωns/(nsnsα)A1 implies ωns(1+η)/(nsnsα)A1 for some η > 0. Let

$$\frac{1}{q}=\frac{1}{q_{1}}+\frac{1}{p}-\frac{1}{p_{1}},\quad\frac{1}{q_{1}} =\frac{1}{p_{1}}-\frac{\alpha}{n},~\text{and}~ \frac{1}{p_{1}}=\frac{1}{s}+\frac{\alpha}{n}+\frac{ns-n-s\alpha}{sn(1+\eta)}.$$

Since q1 = ns(1 + η)/(ns + nηsα) < ns(1 + η)/(nsnsα), we have \(\omega ^{q_{1}}\in A_{1}\subset A_{1+q_{1}/p_{1}^{\prime }}\). It follows from Lemma 2.3 that \(\omega \in A_{p_{1},q_{1}}\). Applying Hölder’s inequality and Theorem I, we get

$$ \begin{array}{@{}rcl@{}} K_{1} &\leq& C\|T_{\alpha} a\|_{L_{\omega^{q_{1}}}^{q_{1}}(\mathbb{R}^{n})}r^{n(1/p-1/p_{1})}\\ &\leq& C\|a\|_{L_{\omega^{p_{1}}}^{p_{1}}(\mathbb{R}^{n})}r^{n(1/p-1/p_{1})}\\ &\leq& C\|a\|_{L^{\infty}(\mathbb{R}^{n})}(\omega^{p_{1}}(B))^{1/p_{1}}r^{n(1/p-1/p_{1})}\\ &\leq& C(\omega^{p}(B))^{-1/p}(\omega^{p_{1}}(B))^{1/p_{1}}r^{n(1/p-1/p_{1})}. \end{array} $$

It follows from Lemma 2.1 that

$$\omega^{p}\in RH_{ns(1+\eta)/p(ns-n-s\alpha)}\subset RH_{p_{1}/p}.$$

By the definition of the reverse Hölder condition,

$$\big(\omega^{p}(B)\big)^{-1/p}\big(\omega^{p_{1}}(B)\big)^{1/p_{1}}\leq C r^{n(1/p_{1}-1/p)},$$

which implies K1C. For K2, by the cancellation condition of a and the Minkowski inequality,

$$ \begin{array}{@{}rcl@{}} K_{2} &=&\Big({\int}_{(2B)^{c}}\Big|{\int}_{B}(K_{\alpha}(x-y)-K_{\alpha}(x))a(y)dy\Big|^{q}\omega(x)^{q}dx\Big)^{1/q}\\ &\leq &{\int}_{B}|a(y)|{\sum}_{j=1}^{\infty}\Big({\int}_{2^{j+1}B\backslash2^{j}B} |K_{\alpha}(x-y)-K_{\alpha}(x)|^{q}\omega(x)^{q}dx\Big)^{1/q}dy. \end{array} $$

Noting that s > q, Hölder’s inequality gives

$$ \begin{array}{@{}rcl@{}} &&{\sum}_{j=1}^{\infty}\Big({\int}_{2^{j+1}B\backslash2^{j}B} |K_{\alpha}(x-y)-K_{\alpha}(x)|^{q}\omega(x)^{q}dx\Big)^{1/q}\\ &\leq& {\sum}_{j=1}^{\infty}\Big({\int}_{2^{j+1}B\backslash2^{j}B} |K_{\alpha}(x-y)-K_{\alpha}(x)|^{s}dx\Big)^{1/s}\Big({\int}_{2^{j+1}B\backslash2^{j}B} \omega(x)^{sq/(s-q)}dx\Big)^{1/q-1/s}. \end{array} $$

Since ns(1 + η)/(nsnsα) = sq1/(sq1) > sq/(sq), we have ωsq/(sq)A1. Then by Lemma 2.2, we get

$$ \begin{array}{@{}rcl@{}} K_{2} &\leq& {\int}_{B}{\sum}_{j=1}^{\infty}(2^{j} r)^{n-\alpha}2^{j\alpha}\Big(\frac{1}{(2^{j}r)^{n}} {\int}_{2^{j+1}B\backslash2^{j}B}|K_{\alpha}(x-y)-K_{\alpha}(x)|^{s}dx\Big)^{1/s}|a(y)|dy\\ &&\qquad\times (\omega^{sq/(s-q)}(2^{j} B))^{1/q-1/s}(2^{j}r)^{\alpha-n+n/s} 2^{-j\alpha}\\ &\leq& C {\int}_{B}{\sum}_{j=1}^{\infty}(2^{j}r)^{n-\alpha}2^{j\alpha}\Big(\frac{1}{(2^{j}r)^{n}} {\int}_{2^{j+1}B\backslash2^{j}B} |K_{\alpha}(x-y)-K_{\alpha}(x)|^{s}dx\Big)^{1/s}|a(y)|dy\\ &&\qquad\times 2^{j(n/q-n/s)}(\omega^{sq/(s-q)} (B))^{1/q-1/s}(2^{j}r)^{\alpha-n+n/s}2^{-j\alpha}. \end{array} $$

Due to ωsq/(sq)A1 gives ωpRHsq/p(sq), thus

$$(\omega^{sq/(s-q)} (B))^{1/q-1/s}(\omega^{p}(B))^{-1/p}\leq C r^{-n/s-\alpha}.$$

Then,

$$ \begin{array}{@{}rcl@{}} K_{2} & \leq& C {\int}_{B}{\sum}_{j=1}^{\infty}(2^{j}r)^{n-\alpha}2^{j\alpha}\Big(\frac{1}{(2^{j}r)^{n}} {\int}_{2^{j+1}B\backslash2^{j}B} |K_{\alpha}(x-y)-K_{\alpha}(x)|^{s}dx\Big)^{1/s}|a(y)|dy\\ &&\times 2^{j(n/q-n/s)}(2^{j}r)^{\alpha-n+n/s}2^{-j\alpha} \big(\omega^{p}(B)\big)^{1/p}r^{-n/s-\alpha}\\ &\leq& C{\int}_{B}|a(y)|dy\big(\omega^{p}(B)\big)^{1/p}r^{-n}\leq C. \end{array} $$

This completes the proof of Theorem 5.10. □

Proof of Theorem 5.11

We use the same argument as in the proof of Theorem 5.10. Let a be a continuous \((H_{\omega }^{1}(\mathbb {R}^{n}),\infty )\)-atom supported in the ball B(x0,r). It suffices to check that for q = n/(nα),

$$\|T_{\alpha} a\|_{L_{\omega^{q}}^{q}(\mathbb{R}^{n})}\leq C.$$

We write

$$\|T_{\alpha} a\|_{L_{\omega^{q}}^{q}(\mathbb{R}^{n})}\leq K_{1}+K_{2},$$

where K1 and K2 are the same as in the proof of Theorem 1.1. It is easy to know that K1C. For K2, by the cancellation condition of a and the Minkowski inequality,

$$ \begin{array}{@{}rcl@{}} K_{2} &\leq& {\int}_{B} {\sum}_{j=1}^{\infty}(2^{j}r)^{n-\alpha}\Big(\frac{1}{(2^{j}r)^{n}} {\int}_{2^{j+1}B\backslash2^{j}B} |K_{\alpha}(x-y)-K_{\alpha}(x)|^{s}dx\Big)^{1/s}|a(y)|dy\\ &&\qquad\times (\omega^{sq/(s-q)}(2^{j} B))^{1/q-1/s}(2^{j}r)^{\alpha-n+n/s}\\ &\leq &C{\int}_{B} {\sum}_{j=1}^{\infty}(2^{j}r)^{n-\alpha}\Big(\frac{1}{(2^{j}r)^{n}} {\int}_{2^{j+1}B\backslash2^{j}B} |K_{\alpha}(x-y)-K_{\alpha}(x)|^{s}dx\Big)^{1/s}|a(y)|dy\\ &&\qquad\times 2^{j(n/q-n/s)}(\omega^{sq/(s-q)} (B))^{1/q-1/s}(2^{j}r)^{\alpha-n+n/s}\\ &\leq& C{\int}_{B} {\sum}_{j=1}^{\infty}(2^{j}r)^{n-\alpha}\Big(\frac{1}{(2^{j}r)^{n}} {\int}_{2^{j+1}B\backslash2^{j}B}|K_{\alpha}(x-y)-K_{\alpha}(x)|^{s}dx\Big)^{1/s}|a(y)|dy\\ &&\qquad\times 2^{j(n/q-n/s)}(2^{j}r)^{\alpha-n+n/s} r^{-n/s-\alpha}\omega(B)\\ &\leq& C{\int}_{B}|a(y)|dy r^{-n}\omega(B). \end{array} $$

This completes the proof of Theorem 5.11. □

Before proving Theorem 5.12, we first establish the following lemma.

Lemma A.1

Let 0 < α ≤ 1, n/(n + α) ≤ p < 1, 1/q = 1/pα/n, and n/(nα) < s. Suppose that \(K_{\alpha }\in \tilde H_{\alpha ,s}^{\alpha }\cap S_{\alpha }\), and ωns/(nsnsα)A1. Then for \(b\in \text {BMO}(\mathbb {R}^{n})\) and any continuous \((H_{\omega ^{p}}^{p}(\mathbb {R}^{n}),\infty )\)-atom a related to a ball \(B:=B(x_{0},r)\subset \mathbb {R}^{n}\), we have

$$\big\|(b-b_{B})T_{\alpha} a\big\|_{L_{\omega^{q}}^{q}(\mathbb{R}^{n})}\leq C\|b\|_{BMO(\mathbb{R}^{n})}.$$

Proof

We write

$$ \begin{array}{@{}rcl@{}} \big\|(b-b_{B})T_{\alpha} a\big\|_{L_{\omega^{q}}^{q}(\mathbb{R}^{n})} &\leq& \Big({\int}_{2B}\big|(b(x)-b_{B})T_{\alpha} a(x)\big|^{q}\omega(x)^{q}dx\Big)^{1/q}\\ &&\qquad+\Big({\int}_{(2B)^{c}}\big|(b(x)-b_{B})T_{\alpha} a(x)\big|^{q}\omega(x)^{q}dx\Big)^{1/q}\\ &=:&K_{1}+K_{2}. \end{array} $$

For K1, it is known that ωns/(nsnsα)A1 implies ωns(1+η)/(nsnsα)A1 for some η > 0. By the definition of p1, q1 in Theorem 5.10 and Lemma 2.3, we have \(\omega \in A_{p_{1},q_{1}}\). Applying Hölder’s inequality, Theorem 5.10 and Theorem I, we get

$$ \begin{array}{@{}rcl@{}} K_{1} &=&\Big({\int}_{2B}\big|(b(x)-b_{B})T_{\alpha} a(x)\big|^{q}\omega(x)^{q}dx\Big)^{1/q}\\ &\leq& |b_{B}-b_{2B}|\big\|T_{\alpha} a\big\|_{L_{\omega^{q}}^{q}(\mathbb{R}^{n})} +\Big({\int}_{2B}\big|(b(x)-b_{2B})T_{\alpha} a(x)\big|^{q}\omega(x)^{q}dx\Big)^{1/q}\\ &\leq& C |b_{B}-b_{2B}|\| a\|_{H_{\omega^{p}}^{p}(\mathbb{R}^{n})} +\Big({\int}_{2B}\big|(b(x)-b_{2B})T_{\alpha} a(x)\big|^{q}\omega(x)^{q}dx\Big)^{1/q} \end{array} $$
$$ \begin{array}{@{}rcl@{}} &\leq& C\|b\|_{BMO(\mathbb{R}^{n})}+\Big({\int}_{2B} \big|b(x)-b_{2B}\big|^{p_{1}p/(p_{1}-p)}dx\Big)^{1/p-1/p_{1}} \|T_{\alpha} a\|_{L_{\omega^{q_{1}}}^{q_{1}}(\mathbb{R}^{n})}\\ &\leq& C\|b\|_{BMO(\mathbb{R}^{n})}+C|2B|^{1/p-1/p_{1}} \|b\|_{BMO(\mathbb{R}^{n})}\|a\|_{L_{\omega^{p_{1}}}^{p_{1}}(\mathbb{R}^{n})}\\ &\leq& C\|b\|_{BMO(\mathbb{R}^{n})}+C|2B|^{1/p-1/p_{1}} \|b\|_{BMO(\mathbb{R}^{n})}\big(\omega^{p}(B)\big)^{-1/p}\big(\omega^{p_{1}}(B)\big)^{1/p_{1}}. \end{array} $$

Due to ωns(1+η)/(nsnsα)A1, then

$$\omega^{p}\in RH_{ns(1+\eta)/p(ns-n-s\alpha)}\subset RH_{p_{1}/p}.$$

By the definition of the reverse Hölder condition,

$$\big(\omega^{p}(B)\big)^{-1/p}\big(\omega^{p_{1}}(B)\big)^{1/p_{1}}\leq C r^{n(1/p_{1}-1/p)},$$

which implies K1C.

We now turn to estimate the other term K2. By the cancellation condition of a and the Minkowski inequality, we have

$$ \begin{array}{@{}rcl@{}} K_{2}&=&\Big({\int}_{(2B)^{c}}\Big|(b(x)-b_{B}){\int}_{B}\big(K_{\alpha}(x-y) -K_{\alpha}(x)\big)a(y)dy\Big|^{q}\omega(x)^{q}dx\Big)^{1/q}\\ &\leq& {\int}_{B}|a(y)|\Big({\int}_{(2B)^{c}}\Big|K_{\alpha}(x-y)-K_{\alpha}(x)\Big|^{q} \big|b(x)-b_{B}\big|^{q}\omega(x)^{q}dx\Big)^{1/q}dy\\ &\leq& {\int}_{B}|a(y)|{\sum}_{j=1}^{\infty}\Big({\int}_{2^{j+1}B\setminus2^{j}B} \Big|K_{\alpha}(x-y)-K_{\alpha}(x)\Big|^{q}\big|b(x)-b_{B}\big|^{q}\omega(x)^{q}dx\Big)^{1/q}dy. \end{array} $$

Since ns(1 + η)/(nsnsα) = sq1/(sq1) > sq/(sq), we have ωsq/(sq)A1. Then by Hölder’s inequality, Lemmas 2.2 and 2.4, we get,

$$ \begin{array}{@{}rcl@{}} &&{\sum}_{j=1}^{\infty}\Big({\int}_{2^{j+1}B\backslash2^{j}B} |K_{\alpha}(x-y)-K_{\alpha}(x)|^{q}\big|b(x)-b_{B}\big|^{q}\omega(x)^{q}dx\Big)^{1/q}\\ &\leq& {\sum}_{j=1}^{\infty}\Big({\int}_{2^{j+1}B\backslash2^{j}B} |K_{\alpha}(x-y)-K_{\alpha}(x)|^{s}dx\Big)^{1/s}\\ &&\qquad\times\Big({\int}_{2^{j+1}B\backslash2^{j}B} \big|b(x)-b_{B}\big|^{sq/(s-q)}\omega(x)^{sq/(s-q)}dx\Big)^{1/q-1/s}\\ &\leq& C{\sum}_{j=1}^{\infty} j\Big({\int}_{2^{j+1}B\backslash2^{j}B} |K_{\alpha}(x-y)-K_{\alpha}(x)|^{s}dx\Big)^{1/s}\\ &&\qquad\times\|b\|_{BMO(\mathbb{R}^{n})} (\omega^{sq/(s-q)}(2^{j} B))^{1/q-1/s}\\ &\leq& C{\sum}_{j=1}^{\infty} j(2^{j} r)^{n-\alpha}2^{j\alpha} \Big(\frac{1}{(2^{j}r)^{n}} {\int}_{2^{j+1}B\backslash2^{j}B}|K_{\alpha}(x-y)-K_{\alpha}(x)|^{s}dx\Big)^{1/s}\\ &&\qquad\times 2^{j(n/q-n/s)}(\omega^{sq/(s-q)}(B))^{1/q-1/s}(2^{j}r)^{\alpha-n+n/s} 2^{-j\alpha}\|b\|_{BMO(\mathbb{R}^{n})}. \end{array} $$

Thus,

$$ \begin{array}{@{}rcl@{}} K_{2} &\leq& C{\int}_{B}{\sum}_{j=1}^{\infty} j(2^{j} r)^{n-\alpha}2^{j\alpha} \Big(\frac{1}{(2^{j}r)^{n}} {\int}_{2^{j+1}B\backslash2^{j}B}|K_{\alpha}(x-y)-K_{\alpha}(x)|^{s}dx\Big)^{1/s}|a(y)|dy\\ &&\qquad\times 2^{j(-n+n/q)}(\omega^{sq/(s-q)}(B))^{1/q-1/s}r^{\alpha-n+n/s} \|b\|_{BMO(\mathbb{R}^{n})}\\ &\leq& C{\int}_{B}|a(y)|dy r^{-n} \big(\omega^{p}(B)\big)^{1/p}\|b\|_{BMO(\mathbb{R}^{n})} \leq C\|b\|_{BMO(\mathbb{R}^{n})}. \end{array} $$

This, together with the estimate of K1, leads to

$$\big\| (b-b_{B})T_{\alpha} a\big\|_{L_{\omega^{q}}^{q}(\mathbb{R}^{n})}\leq C\| b\|_{\text{BMO}(\mathbb{R}^{n})}.$$

This completes the proof of Lemma A.1. □

We are now in a position to prove Theorem 5.12.

Proof of Theorem 5.12

By Lemmas 2.5 and A.1, employing the same arguments as in the proof of Theorem 1.1, we can deduce the conclusion of Theorem 5.12. The details are omitted here. □

Similarly to the proof of Theorem 5.12, in order to prove Theorem 5.13, we first establish the following auxiliary lemma.

Lemma A.2

Let 0 < α < n, n/(nα) < s. Suppose that \(K_{\alpha }\in \tilde H_{\alpha ,s}\cap S_{\alpha }\), and ωns/(nsnsα)A1. Then for \(b\in \text {BMO}(\mathbb {R}^{n})\) and any continuous \((H_{\omega }^{1}(\mathbb {R}^{n}),\infty )\)-atom a related to a ball \(B:=B(x_{0},r)\subset \mathbb {R}^{n}\), we have

$$\big\|(b-b_{B})T_{\alpha} a\big\|_{L_{\omega^{q}}^{q}(\mathbb{R}^{n})}\leq C\|b\|_{BMO(\mathbb{R}^{n})},$$

where q = n/(nα).

Proof

Using the same arguments as in Lemma A.1, we write

$$ \begin{array}{@{}rcl@{}} \big\|(b-b_{B})T_{\alpha} a\big\|_{L_{\omega^{q}}^{q}(\mathbb{R}^{n})} &\leq &\Big({\int}_{2B}\big|(b(x)-b_{B})T_{\alpha} a(x)\big|^{q}\omega(x)^{q}dx\Big)^{1/q}\\ &&\quad+\Big({\int}_{(2B)^{c}}\big|(b(x)-b_{B})T_{\alpha} a(x)\big|^{q}\omega(x)^{q}dx\Big)^{1/q}\\ &=&:K_{1}+K_{2}. \end{array} $$

It is easy to know that \(K_{1}\leq C\|b\|_{BMO(\mathbb {R}^{n})}.\) For K2, by the cancellation condition of a and the Minkowski inequality,

$$ \begin{array}{@{}rcl@{}} K_{2} &\leq& C{\int}_{B}{\sum}_{j=1}^{\infty} j(2^{j} r)^{n-\alpha}\Big(\frac{1}{(2^{j}r)^{n}}{\int}_{2^{j+1}B\backslash2^{j}B} |K_{\alpha}(x-y)-K_{\alpha}(x)|^{s}dx\Big)^{1/s}|a(y)|dy\\ &&\qquad\times (\omega^{sq/(s-q)}(2^{j} B))^{1/q-1/s}(2^{j}r)^{\alpha-n+n/s} \|b\|_{BMO(\mathbb{R}^{n})}\\ &&\leq C{\int}_{B}{\sum}_{j=1}^{\infty} j(2^{j} r)^{n-\alpha}\Big(\frac{1}{(2^{j}r)^{n}}{\int}_{2^{j+1}B\backslash2^{j}B} |K_{\alpha}(x-y)-K_{\alpha}(x)|^{s}dx\Big)^{1/s}|a(y)|dy\\ &&\qquad\times (\omega^{sq/(s-q)}(B))^{1/q-1/s}r^{\alpha-n+n/s} \|b\|_{BMO(\mathbb{R}^{n})}\\ &&\leq C\|b\|_{BMO(\mathbb{R}^{n})}{\int}_{B}|a(y)|dyr^{-n}\omega(B). \end{array} $$

This, together with the estimate of K1, leads to

$$\big\| (b-b_{B})T_{\alpha} a\big\|_{L_{\omega^{q}}^{q}(\mathbb{R}^{n})}\leq C\| b\|_{\text{BMO}(\mathbb{R}^{n})}.$$

This completes the proof of Lemma A.2. □

We are now in a position to prove Theorem 5.13.

Proof of Theorem 5.13

By Lemmas 2.5 and A.2, employing the same arguments as in the proof of Theorem 1.1, we can deduce the conclusion of Theorem 5.13. The details are omitted here. □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Y., Wu, H. The Weighted Hp Estimates for Commutators of Fractional Integrals. Potential Anal 59, 1827–1850 (2023). https://doi.org/10.1007/s11118-022-10033-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-022-10033-w

Keywords

Mathematics Subject Classification (2010)

Navigation