Skip to main content
Log in

On Diffusion Processes with Drift in Ld+ 1

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

This paper is a natural continuation of Krylov (2020 and 2021) where strong Markov processes are constructed in time inhomogeneous setting with Borel measurable uniformly bounded and uniformly nondegenerate diffusion and drift in \(L_{d+1}(\mathbb {R}^{d+1})\) and some properties of their Green’s functions and probability of passing through narrow tubes are investigated. On the basis of this here we study some further properties of these processes such as Harnack inequality, Hölder continuity of potentials, Fanghua Lin estimates and so on.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beck, L., Flandoli, F., Gubinelli, M., Maurelli, M.: Stochastic ODEs and stochastic linear PDEs with critical drift: regularity, duality and uniqueness. Electron. J. Probab. 24(136), 1–72 (2019)

    MathSciNet  MATH  Google Scholar 

  2. Cabré, X: On the Alexandroff-Bakelman-Pucci estimate and the reversed Hölder inequality for solutions of elliptic and parabolic equations. Comm. Pure Appl. Math. 48, 539–570 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  3. Crandall, M.G., Kocan, M., Świȩch, A.: Lp-theory for fully nonlinear uniformly parabolic equations. Comm. Partial Differential Equations 25(11-12), 1997–2053 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dynkin, E.B.: “Markov processes”, Fizmatgiz, Moscow, 1963 in Russian; English translation in Grundlehren Math. Wiss, vol. 121–122. Springer, Berlin (1965)

    Google Scholar 

  5. Escauriaza, L: W2,n a priori estimates for solutions to fully non-linear equations. Indiana Univ. Math. J. 42, 413–423 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fok, P.: Some maximum principles and continuity estimates for fully nonlinear elliptic equations of second order. Ph.D, Thesis, Santa Barbara (1996)

    Google Scholar 

  7. Kinzebulatov, D., Semenov, Yu.A.: Stochastic differential equations with singular (form-bounded) drift, arXiv:1904.01268

  8. Krylov, N.V.: “Sobolev and viscosity solutions for fully nonlinear elliptic and parabolic equations” Mathematical Surveys and Monographs, vol. 233. Amer. Math. Soc., Providence (2018)

    Book  Google Scholar 

  9. Krylov, N.V.: On stochastic equations with drift in Ld. Appeared in Annals of Prob. 49(5), 2371–2398 (2021). arXiv:2001.04008

    MATH  Google Scholar 

  10. Krylov, N.V.: On diffusion processes with drift in Ld. Appeared in Probab. Theory Relat. Fields 179, 165–199 (2021). arXiv:2001.04950

    Article  MATH  Google Scholar 

  11. Krylov, N.V.: On time inhomogeneous stochastic Itô equations with drift in Ld+ 1. Appeared in Ukrainskyi Matematychnyi Zhurnal, 72(9), 1232–1253 (2020). Reprinted in Ukrainian Math. J. 72(9), 1420–1444 (2021). arXiv:2005.08831

  12. Krylov, N.V.: On potentials of Itô’s processes with drift in Ld+ 1, arXiv:2102.10694 (2021)

  13. Krylov, N.V., Safonov, M.V.: An estimate of the probability that a diffusion process hits a set of positive measure. Doklady Academii Nauk SSSR 245 (1), 18–20 (1979). in Russian, English transl. in Soviet Math. Dokl., Vol. 20 (1979), No. 2, 253–255

    MATH  Google Scholar 

  14. Krylov, N.V., Safonov, M.V.: A certain property of solutions of parabolic equations with measurable coefficients. Izvestiya Akademii Nauk SSSR, seriya matematicheskaya 44(1), 161–175 (1980). in Russian; English translation in Math. USSR Izvestija, Vol. 16 (1981), No. 1, 151–164

    MathSciNet  Google Scholar 

  15. Nam, Kyeongsik: Stochastic differential equations with critical drifts, arXiv:1802.00074 (2018)

  16. Safonov, M.V: Harnack inequalities for elliptic equations and Hölder continuity of their solutions. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov (LOMI) 96, 272–287 (1980). in Russian; English transl. in Journal of Soviet Mathematics, Vol. 21 (March 1983), No. 5, 851–863

    MathSciNet  MATH  Google Scholar 

  17. Xie, Longjie, Zhang, Xicheng: Ergodicity of stochastic differential equations with jumps and singular coefficients. Annales de l’Institut Henri Poincaré - Probabilités et Statistiques 56(1), 175–229 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  18. Yastrzhembskiy, T.: A note on the strong Feller property of diffusion processes, arXiv:2001.09919

  19. Zhao, Guohuan: Stochastic Lagrangian flows for SDEs with rough coefficients, arXiv:1911.05562v2

  20. Zhang, Xicheng, Zhao, Guohuan: Stochastic Lagrangian path for Leray solutions of 3D Navier-Stokes equations, arXiv:1904.04387

Download references

Acknowledgments

The author is sincerely grateful to the referee for many comments which helped improve the presentation.

The document contains no data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Krylov.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix:

Appendix:

Here we present without proofs some results from [12] frequently used in the main text.

Set

$$ \tau^{\prime}_{R}(x)=\inf\{t\geq0:x+x_{t}\not\in B_{R}\},\quad \gamma_{R}(x)=\inf\{t\geq0:x+x_{t} \in \bar B_{R}\}. $$
(A.1)

Theorem A.1 (Theorem 2.3)

There are constants \(\bar \xi =\bar \xi (d,\delta )\in (0,1) \) and \(\bar N=\bar N(d,p_{0}, \delta )\) continuously depending on δ such that if, for an \( R\in (0,\infty )\), we have

$$ \bar N \bar b_{R}\leq 1, $$
(A.2)

then for |x|≤ R

$$ P(\tau_{R}(x) = R^{2} )\leq 1-\bar\xi, \quad P(\tau_{R} = R^{2} )\geq \bar\xi . $$
(A.3)

Moreover for n = 1, 2,... and |x|≤ R

$$ P(\tau^{\prime}_{R}(x)\geq nR^{2}) = P(\tau_{nR^{2},R}(x) = n R^{2} )\leq (1-\bar\xi)^{n}, $$
(A.4)

so that \(E\tau ^{\prime }_{R}(x)\leq N(d,\delta )R^{2}\).

Furthermore, for any \(x\in \bar B_{9R/16}\)

$$ P(\tau^{\prime}_{R}(x)>\gamma_{R/16}(x))\geq\bar\xi. $$
(A.5)

Theorem A.2 (Theorem 2.6)

For any λ,R > 0 we have

$$ Ee^{-\lambda \tau_{R} }\leq e^{\bar\xi/2}e^{- \sqrt{\dot\lambda} R \bar\xi/2}= \begin{cases} e^{\bar\xi/2}e^{-\sqrt\lambda R\bar\xi/2} \quad\text{if}\quad \lambda \geq \underline{\lambda}\\ e^{\bar\xi/2}e^{-\lambda R\underline{R} \bar\xi/2}\quad\text{if} \quad \lambda \leq \underline{\lambda}, \end{cases} $$
(A.6)

where

$$ \dot\lambda= \lambda\min(1, \lambda/\underline{\lambda} ),\quad \underline{\lambda}=\underline{R}^{-2}. $$

In particular, for any R > 0 and \(t\leq R\underline {R} \bar \xi /4 \) we have

$$ P(\tau_{R} \leq t )\leq e^{\bar\xi/2}\exp\Big(-\frac{{\bar \xi}^{2}R^{2}}{16 t}\Big). $$
(A.7)

Theorem A.3 (Theorem 2.9)

Let \(R\in (0,\underline {R}]\), \(x,y\in \mathbb {R}^{d}\) and 16|xy|≥ 3R. For r > 0 denote by Sr(x,y) the open convex hull of Br(x) ∪ Br(y). Then there exist T0,T1, depending only on \(\bar \xi \), such that \(0<T_{0}<T_{1}<\infty \) and the probability π that x + xt will reach \(\bar B_{R/16}(y)\) before exiting from SR(x,y) and this will happen on the time interval [nT0R2,nT1R2] is greater than \({\pi _{0}^{n}}\), where

$$ n= \Big\lfloor \frac{16|x-y|+R}{4R}\Big\rfloor $$

and \(\pi _{0}=\bar \xi /3\).

Theorem A.4 (Theorem 4.3)

There exists d0 ∈ (1,d), depending only on δ, d, \(\underline {R}\), p0, such that for any pd0 + 1 and λ > 0

$$ {\int}_{0}^{\infty}{\int}_{\mathbb{R}^{d}}G_{\lambda}^{p/(p-1)}(t,x) dxdt\leq N(\delta,d,\underline{R},p_{0},\lambda,p). $$

Furthermore, the above constant \(N(\delta ,d,\underline {R},p_{0},\lambda ,p)\) can be taken in the form

$$ N(\delta,d,\underline{R},p_{0},p)\ddot{\lambda}_{p}^{(d+2)/(2p)-1}, $$

where

$$ \ddot{\lambda}_{p}=\lambda(1\wedge\lambda)^{d/(2p-d-2)}. $$

Theorem A.5 (Theorem 4.8)

Suppose

$$ p ,q \in [1,\infty],\quad \nu:=1-\frac{d_{0}}{p }-\frac{1}{q }\geq 0. $$
(A.8)

Then there is \(N=N(\delta ,d,\underline {R},p,q,p_{0},\bar b_{\infty } )\) such that for any λ > 0 and Borel nonnegative f we have

$$ E{\int}_{0}^{\infty}e^{- \lambda t} f(t,x_{t}) dt\leq N\ddot{\lambda}_{d_{0}+1}^{-\nu+(d-2d_{0})/(2p )}\|{\Psi}_{\lambda}^{1-\nu} f\|_ {L_{p ,q }(\mathbb{R}^{d+1}_{+})}, $$
(A.9)

where \({\Psi }_{\lambda }(t,x)=\exp (- \sqrt {\dot \lambda } (|x|+ \sqrt t)\bar \xi /16)\). In particular, if f is independent of t, pd0, and \(q=\infty \)

$$ E{\int}_{0}^{\infty}e^{- \lambda t} f(x_{t}) dt\leq N\ddot{\lambda}_{d_{0}+1}^{-1+d/(2p)}\|\bar {\Psi}_{\lambda}^{d_{0}/p} f\|_ {L_{p }(\mathbb{R}^{d } )}, $$

where \(\bar {\Psi }_{\lambda }(x)=\exp (- \sqrt {\dot \lambda } |x| \bar \xi /16)\).

Theorem A.6 (Theorem 4.9)

Assume that Eq. A.8 holds. Then

(ii) for any n = 1, 2,..., nonnegative Borel f on \(\mathbb {R}^{d+1}_{+}\), and T ≤ 1 we have

$$ E{\Big[{\int}_{0}^{T}} f(t,x_{t}) dt\Big]^{n}\leq n!N^{n} T^{n\chi }\| {\Psi}^{(1-\nu)/n}_{1/T} f\|^{n}_{L_{p,q}(\mathbb{R}^{d+1}_{+}) }, $$
(A.10)

where \(N=N(\delta ,d,\underline {R},p,q,p_{0},\bar b_{\infty } )\) and χ = ν + (2d0d)/(2p);

(ii) for any nonnegative Borel f on \(\mathbb {R}^{d+1}_{+}\), and T ≥ 1 we have

$$ I:=E {{\int}_{0}^{T}} f(t,x_{t}) dt \leq N T^{1-1/q} \| {\Psi}^{1-\nu }_{1} f\|_{L_{p,q}(\mathbb{R}^{d+1}_{+}) }, $$
(A.11)

where \(N=N(\delta ,d,\underline {R},p,q,p_{0},\bar b_{\infty } )\).

Theorem A.7 (Theorem 4.10)

Assume that Eq. A.8 holds with ν = 0. Then for any \(R\in (0,\bar R] \), x, and Borel nonnegative f given on CR, we have

$$ E{\int}_{0}^{\tau_{R}(x)}f(t,x+x_{t}) dt\leq NR^{(2d_{0}-d)/p}\|f\|_{L_{p,q}(C_{R})}, $$
(A.12)

where \(N=N(\delta ,d,\underline {R},p, p_{0},\bar b_{\bar R},\bar R )\).

Theorem A.8 (Theorem 4.11)

Assume that Eq. A.8 holds with ν = 0 and \(p<\infty \), \(q<\infty \). Let Q be a bounded domain in \(\mathbb {R}^{d+1}\), 0 ∈ Q, b be bounded, and \(u\in W^{1,2}_{p,q}(Q)\cap C(\bar Q)\). Then, for τ defined as the first exit time of (t,xt) from Q and for all t ≥ 0,

$$ u(t\wedge\tau,x_{t\wedge\tau}) =u(0,0)+{\int}_{0}^{t\wedge\tau}D_{i}u(s,x_{s}) d{m^{i}_{s}} $$
$$ +{\int}_{0}^{t\wedge\tau}[ \partial_{t}u(s,x_{s})+ a^{ij}_{s}D_{ij}u(s,x_{s}) +{b^{i}_{s}}D_{i}u(s,x_{s})] ds $$
(A.13)

and the stochastic integral above is a square-integrable martingale.

Theorem A.9 (Theorem 5.1)

Let \(0<R\leq \bar R\), domain QCR, and assume that Eq. ?? holds with ν = 0, \(p<\infty \), \(q<\infty \), and that we are given a function \(u\in W^{1,2}_{p,q,\text{loc}}(Q)\cap C(\bar Q)\). Take a function c ≥ 0 on Q. Then on Q

$$ u \leq NR^{(2d_{0}-d)/p} \|I_{Q,u>0}(\partial_{t}u+Lu-cu)_{-}\|_{L_{p,q} } +\sup_{\partial^{\prime}Q}u_{+}, $$
(A.14)

where \(N=N(\delta ,d,\underline {R},\bar R,p, p_{0},\bar b_{\bar R})\) and \(\partial ^{\prime }Q\) is the parabolic boundary of Q. In particular (the maximum principle), if tu + Lucu ≥ 0 in Q and u ≤ 0 on \(\partial ^{\prime }Q\), then u ≤ 0 in Q.

Lemma A.10 (Lemma 2.2)

We have

$$ A:= E \tau_{R} (x)\leq R^{2}, $$
(A.15)

and, assuming that Eq. A.8 holds with ν = 0, for any Borel nonnegative f we have

$$ E{\int}_{0}^{\tau_{R}(x)} f(t,x_{t}) dt\leq N(d,p_{0}, \delta)(1+\bar b_{R})^{d/ p } R^{d/ p } \|f\|_{L_{p ,q }}. $$
(A.16)

Corollary A.11 (Corollary 2.10)

Let \(R\leq \underline {R}\), κ ∈ [0, 1), and |x|≤ κR. Then for any T > 0

$$ NP(\tau^{\prime}_{R}(x)> T)\geq e^{-\nu T/[(1-\kappa)R]^{2}}, $$
(A.17)

where N and ν > 0 depend only on \(\bar \xi \).

Corollary A.12 (Corollary 2.7)

Let \( {\Lambda }\in (0,\infty )\). Then there is a constant \(N =N (\underline {R},\bar R,{\Lambda },\bar \xi )\) such that for any \(R\in (0,\bar R]\), λ ∈ [0,Λ]

$$ N E \tau_{R} \geq R^{2},\quad N E{\int}_{0}^{\tau_{R}} e^{-\lambda t} dt \geq R^{2} . $$
(A.18)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krylov, N.V. On Diffusion Processes with Drift in Ld+ 1. Potential Anal 59, 1013–1037 (2023). https://doi.org/10.1007/s11118-022-09988-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-022-09988-7

Keywords

Mathematics Subject Classification (2010)

Navigation