Skip to main content
Log in

Regularity of Solutions to Kolmogorov Equations with Perturbed Drifts

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

We prove that a probability solution of the stationary Kolmogorov equation generated by a first order perturbation v of the Ornstein–Uhlenbeck operator L possesses a highly integrable density with respect to the Gaussian measure satisfying the non-perturbed equation provided that v is sufficiently integrable. More generally, a similar estimate is proved for solutions to inequalities connected with Markov semigroup generators under the curvature condition \(CD(\theta ,\infty )\). For perturbations from Lp an analog of the Log-Sobolev inequality is obtained. It is also proved in the Gaussian case that the gradient of the density is integrable to all powers. We obtain dimension-free bounds on the density and its gradient, which also covers the infinite-dimensional case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio, L., Gigli, N., Savare, G.: Gradient Flows in Metric Spaces and in the Space of Probability Measures. Lectures in Mathematics ETH Zürich. Basel, Birkhäuser (2008)

    MATH  Google Scholar 

  2. Bakry, D., Gentil, I., Ledoux, M.: Analysis and Geometry of Markov Diffusion Operators. Springer, Berlin (2013)

    MATH  Google Scholar 

  3. Bakry, D., Gentil, I., Ledoux, M.: On Harnack inequalities and optimal transportation. Annali Scu. Norm. Super. Pisa Cl. Sci. (5) 14, 705–727 (2015)

    MathSciNet  MATH  Google Scholar 

  4. Bogachev, V.I.: Gaussian Measures. Amer. Math. Soc. Providence, Rhode Island (1998)

  5. Bogachev, V.I., Da Prato, G., Röckner, M., Sobol, Z.: Gradient bounds for solutions of elliptic and parabolic equations. In: Da Prato, G., Tubaro, L. (eds.) Stochastic Partial Differential Equations and AppLiCaTiOns – VII, pp 27–34. Chapman and Hall/CRC, Boca Raton (2006)

  6. Bogachev, V.I., Krylov, N.V., Röckner, M.: On regularity of transition probabilities and invariant measures of singular diffusions under minimal conditions. Comm. Partial Differ. Eq. 26, 2037–2080 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bogachev, V.I., Krylov, N.V., Röckner, M.: Elliptic equations for measures: regularity and global bounds of densities. J. Math. Pures Appl. 85, 743–757 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bogachev, V.I., Krylov, N.V., Röckner, M.: Elliptic and parabolic equations for measures. Uspehi Matem. Nauk 64(6), 5–116 (2009) (in Russian); English transl. Russian Math. Surveys 64(6), 973–1078 (2009)

    Article  MathSciNet  Google Scholar 

  9. Bogachev, V.I., Krylov, N.V., Röckner, M., Shaposhnikov, S.V.: Fokker–Planck–Kolmogorov Equations. Amer. Math. Soc. Rhode Island, Providence (2015)

  10. Bogachev, V.I., Popova, S.N., Shaposhnikov, S.V.: On Sobolev regularity of solutions to Fokker–Planck–Kolmogorov equations with drifts in l1. Rendiconti Lincei – Matematica e Applicazioni 30(1), 205–221 (2019)

    Article  MATH  Google Scholar 

  11. Bogachev, V.I., Röckner, M.: Regularity of invariant measures on finite and infinite dimensional spaces and applications. J. Funct. Anal. 133, 168–223 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bogachev, V.I., Röckner, M., Shaposhnikov, S.V.: Estimates of densities of stationary distributions and transition probabilities of diffusion processes. Teor. Verojatn. i Primen. 52(2), 240–270 (2007). (in Russian); English transl.: Theory Probab. Appl., 52(2): 209–236 2008

    MathSciNet  Google Scholar 

  13. Bogachev, V.I., Röckner, M., Wang, F. -Y.: Elliptic equations for invariant measures on finite and infinite dimensional manifolds. J. Math. Pures Appl. 80, 177–221 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bogachev, V.I., Röckner, M., Zhang, T.S.: Existence of invariant measures for diffusions with singular drifts. Appl. Math. Optim. 41, 87–109 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bogachev, V.I., Shaposhnikov, A.V., Shaposhnikov, S.V.: Log-sobolev-type inequalities for solutions to stationary Fokker–Planck–Kolmogorov equations. Calc. Var. Partial Differ. Equ. 58(5), Article 176 (2019)

  16. Carbonaro, A.: Functional calculus for some perturbations of the Ornstein–Uhlenbeck operator. Math. Z. 262(2), 313–347 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Da Prato, G.: Kolmogorov Equations for Stochastic PDEs. Basel, Birkhäuser (2004)

    Book  MATH  Google Scholar 

  18. Da Prato, G., Zabczyk, J.: Second Order Partial Differential Equations in Hilbert Spaces. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  19. Es-Sarhir, A., Farkas, B. : Invariant measures and regularity properties of perturbed Ornstein–Uhlenbeck semigroups. J. Differ. Eq. 233(1), 87–104 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fornaro, S., Fusco, N., Metafune, G., Pallara, D.: Sharp upper bounds for the density of some invariant measures. Proc. Roy. Soc. Edinburgh Sect. A 139(6), 1145–1161 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hino, M.: Existence of invariant measures for diffusion processes on a Wiener space. Osaka. J. Math. 35, 717–734 (1998)

    MathSciNet  MATH  Google Scholar 

  22. Hino, M.: Exponential decay of positivity preserving semigroups on Lp. OsakaJ. Math. 37, 603–624 (2000). Correction:, ibid. 39: 771(2002)

    MATH  Google Scholar 

  23. Hino, M., Matsuura, K.: An integrated version of Varadhan’s asymptotics for lower-order perturbations of strong local Dirichlet forms. Potential Anal. 48(3), 257–300 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  24. Manca, L.: Differentiable perturbations of Ornstein–Uhlenbeck operators. Dynam. Systems Appl. 17, 435–443 (2008)

    MathSciNet  MATH  Google Scholar 

  25. Metafune, G., Pallara, D., Rhandi, A.: Global regularity of invariant measures. J. Funct. Anal. 223, 396–424 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  26. Metafune, G., Prüss, J., Schnaubelt, R., Rhandi, A.: Lp,-regularity for elliptic operators with unbounded coefficients. Adv. Differ. Eq. 10(10), 1131–1164 (2005)

    MATH  Google Scholar 

  27. Metafune, G., Spina, C.: Elliptic operators with unbounded diffusion coefficients in lp spaces. Annali Scu. Norm. Super. Pisa Cl. Sci. (5) 11(2), 303–340 (2012)

    MATH  Google Scholar 

  28. Shigekawa, I.: Existence of invariant measures of diffusions on an abstract Wiener space. Osaka J. Math. 24(1), 37–59 (1987)

    MathSciNet  MATH  Google Scholar 

  29. Shigekawa, I.: Stochastic Analysis. Amer. Math. Soc. Providence, Rhode Island (2004)

  30. Shigekawa, I.: A non-symmetric diffusion process on the Wiener space. Math. J. Okayama Univ. 60, 137–153 (2018)

    MathSciNet  MATH  Google Scholar 

  31. Suzuki, K.: Regularity and stability of invariant measures for diffusion processes under synthetic lower Ricci curvature bounds. arXiv:1812.00745v2, to appear in Annali Scu. Norm. Super. Pisa. Cl. Sci (2021)

Download references

Acknowledgements

We are very grateful to the anonymous referee for thorough reading and important corrections. This research is supported by the Russian Science Foundation Grant 17-11-01058 at Lomonosov Moscow State University (the results in Section ?? and Section ??). The second author is a winner of the “Young Russian Mathematics” contest and thanks its sponsors and jury. The work of A.V. Shaposhnikov (the results in Section ??) was performed at the Steklov International Mathematical Center and supported by the Ministry of Science and Higher Education of the Russian Federation (agreement no. 075-15-2019-1614).

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir I. Bogachev.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogachev, V.I., Kosov, E.D. & Shaposhnikov, A.V. Regularity of Solutions to Kolmogorov Equations with Perturbed Drifts. Potential Anal 58, 681–702 (2023). https://doi.org/10.1007/s11118-021-09954-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-021-09954-9

Keywords

Mathematics Subject Classification (2010)

Navigation