Skip to main content
Log in

Scattering Theory for a Class of Radial Focusing Inhomogeneous Hartree Equations

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

This paper studies the asymptotic behavior of global solutions to the generalized Hartree equation

$$ i\dot u+{\Delta} u+(I_{\alpha} *|\cdot|^{b}|u|^{p})|x|^{b}|u|^{p-2}u=0 . $$

Indeed, using a new approach due to (Dodson et al. Proc. Amer. Math. Soc. 145(11), 4859–4867, 2017), one proves the scattering of the above inhomogeneous Choquard equation in the mass-super-critical and energy sub-critical regimes with radial setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The data sets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Alharbi, M. G., Saanouni, T.: Sharp threshold of global well-posedness vs finite time blow-up for a class of inhomogeneous Choquard equations. J. Math. Phys. 60, 081514 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arora, A. K.: Scattering of radial data in the focusing NLS and generalized hartree equations. Discr. Cont. Dyn. Syst. 39(11), 6643–6668 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bergé, L., Couairon, A.: Nonlinear propagation of self-guided ultra-short pulses in ionized gases. Phys. Plasmas. 7, 210–230 (2000)

    Article  Google Scholar 

  4. Dodson, B., Murphy, J.: A new proof of scattering below the ground state for the 3D radial focusing cubic NLS. Proc. Amer. Math. Soc. 145(11), 4859–4867 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Duyckaerts, T., Roudenko, S.: Going beyond the threshold: scattering and blow-up in the focusing NLS equation,. Commun. Math. Phys. 334, 1573–1615 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Feng, B., Yuan, X.: On the Cauchy problem for the Schrödinger-Hartree equation. Evol. Equ. Control Theory 4(4), 431–445 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fröhlich, J., Lenzmann, E.: Mean-field limit of quantum Bose gases and nonlinear Hartree equation, Séminaire: Equations aux Dérivées Partielles 2003–2004, Sémin. Équ. Dériv. Partielles (Ecole Polytech., Palaiseau), Exp. no. XIX, p. 26 (2004)

  8. Ghanmi, R., Saanouni, T.: Asymptotics for a class of heat equations with inhomogeneous nonlinearity. Analysis 1, 38 (2018)

    MATH  Google Scholar 

  9. Guo, Z., Wang, Y.: Improved Strichartz estimates for a class of dispersive equations in the radial case and their applications to non-linear Schrödinger and wave equations. J. Anal. Math. 124(1), 1–38 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kenig, C. E., Merle, F.: Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case. Invent. Math. 166(3), 645–675 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lieb, E.: Analysis, 2nd edn. Graduate Studies in Mathematics, vol. 14. American Mathematical Society, Providence (2001)

    Google Scholar 

  12. Moroz, V., Schaftingen, J. V.: Groundstates of non-linear Choquard equations: existence, qualitative properties and decay asymptotics. J. Funct. Anal. 265, 153–184 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Nirenberg, L.: On elliptic partial differential equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 13, 116–162 (1955)

    MathSciNet  MATH  Google Scholar 

  14. Ruiz, D.: The Schrödinger-Poisson equation under the effect of a nonlinear local term. J. Funct. Anal. 237, 655–674 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Saanouni, T.: A note on the fractional Schrödinger equation of Choquard type. J. Math. Anal. Appl. 470, 1004–1029 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  16. Saanouni, T.: Scattering threshold for the focusing Choquard equation. Nonlinear Differ. Equ. Appl. 41, 26 (2019)

    MATH  Google Scholar 

  17. Tao, T.: On the asymptotic behavior of large radial data for a focusing non-linear Schrödinger equation. Dyn. Partial. Differ. Equ. 1(1), 1–48 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Tarulli, M., Venkov, G.: Decay and scattering in energy space for the solution of weakly coupled Schrödinger-Choquard and Hartree-Fock equations, J. Evol Equ. (2020)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarek Saanouni.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

This section is devoted to prove a variance identity and a global Strichartz type estimate.

1.1 Proof of Proposition 2.12

Let uC([0,T],H1) be a local solution to Eq. ??. Testing the Eq. ?? by \(2\bar u\), one gets

$$ -2\Im(\bar u {\Delta} u)=\partial_{t} (|u|^{2}).$$

Thus,

$$V^{\prime}_{a}=-2{\int}_{\mathbb{R}^{N}}a\Im(\bar u{\Delta} u) dx=2\Im{\int}_{\mathbb{R}^{N}}(\partial_{k}a\partial_{k}u)\bar u dx=M_{a}.$$

Compute,

$$ \begin{array}{@{}rcl@{}} \partial_{t}\Im(\partial_{k} u\bar u) &=&\Im(\partial_{k}\dot u\bar u)+\Im(\partial_{k} u\bar{\dot u})\\ &=&\Re(i\dot u\partial_{k}\bar u)-\Re(i\partial_{k} \dot u\bar{u})\\ &=&\Re(\partial_{k}\bar u(-{\Delta} u-\mathcal N))-\Re(\bar u\partial_{k}(-{\Delta} u-\mathcal N))\\ &=&\Re(\bar u\partial_{k}{\Delta} u-\partial_{k}\bar u{\Delta} u)+\Re(\bar u\partial_{k}\mathcal N-\partial_{k}\bar u\mathcal N). \end{array} $$

Thanks to the equality,

$$\frac{1}{2}\partial_{k}{\Delta}(|u|^{2})=2\partial_{l}\Re(\partial_{k}u\partial_{l}\bar u)+\Re(\bar u\partial_{k}{\Delta} u-\partial_{k}\bar u{\Delta} u),$$

one has

$$ \begin{array}{@{}rcl@{}} {\int}_{\mathbb{R}^{N}}\partial_{k}a\Re(\bar u\partial_{k}{\Delta} u-\partial_{k}\bar u{\Delta} u) dx &=&{\int}_{\mathbb{R}^{N}}\partial_{k}a\Big(\frac{1}{2}\partial_{k}{\Delta}(|u|^{2})-2\partial_{l}\Re(\partial_{k}u\partial_{l}\bar u)\Big) dx\\ &=&2{\int}_{\mathbb{R}^{N}}\partial_{l}\partial_{k}a\Re(\partial_{k}u\partial_{l}\bar u) dx-\frac{1}{2}{\int}_{\mathbb{R}^{N}}{\Delta}^{2}a|u|^{2} dx. \end{array} $$

Moreover,

$$ \begin{array}{@{}rcl@{}} \Re(\bar u\partial_{k}\mathcal N) &=&\Re\Big(\bar u\partial_{k}[|x|^{b}|u|^{p-2}(I_{\alpha}*|\cdot|^{b}|u|^{p})u]\Big)\\ &=&\Re\Big(\bar u[(\alpha-N)|x|^{b}|u|^{p-2}(\frac{x_{k}}{|\cdot|^{2}}I_{\alpha}*|\cdot|^{b}|u|^{p})u]+[|x|^{b}|u|^{p-2}(I_{\alpha}*|\cdot|^{b}|u|^{p})\partial_{k}u]\Big)\\ &+&\Re\Big(\bar u(I_{\alpha}*|\cdot|^{b}|u|^{p})[bx_{k}|x|^{b-2}|u|^{p-2}u]+(p-2)[(I_{\alpha}*|\cdot|^{b}|u|^{p})|x|^{b}\Re(\partial_{k}u\bar u)|u|^{p-4}u]\Big)\\ &=&(\alpha-N)|x|^{b}|u|^{p}(\frac{x_{k}}{|\cdot|^{2}}I_{\alpha}*|\cdot|^{b}|u|^{p})+|x|^{b}|u|^{p-2}(I_{\alpha}*|\cdot|^{b}|u|^{p})\Re(\partial_{k}\bar u u)\\ &+&bx_{k}|x|^{b-2}|u|^{p}(I_{\alpha}*|\cdot|^{b}|u|^{p})+(p-2)|x|^{b}|u|^{p-2}(I_{\alpha}*|\cdot|^{b}|u|^{p})\Re(\partial_{k}u\bar u). \end{array} $$

Thus,

$$ \begin{array}{@{}rcl@{}} (A) &:=&{\int}_{\mathbb{R}^{N}}\partial_{k}a\Re(\bar u\partial_{k}\mathcal N-\partial_{k}\bar u\mathcal N) dx\\ &=&b{\int}_{\mathbb{R}^{N}}\partial_{k}ax_{k}|x|^{b-2}|u|^{p}(I_{\alpha}*|\cdot|^{b}|u|^{p}) dx+\frac{p-2}{2}{\int}_{\mathbb{R}^{N}}\partial_{k}a|x|^{b}(I_{\alpha}*|\cdot|^{b}|u|^{p})|u|^{p-2}\partial_{k}(|u|^{2}) dx\\ &&+(\alpha-N){\int}_{\mathbb{R}^{N}}\partial_{k}a|x|^{b}|u|^{p}\left( \frac{x_{k}}{|\cdot|^{2}}I_{\alpha}*|\cdot|^{b}|u|^{p}\right) dx\\ &=&b{\int}_{\mathbb{R}^{N}}\partial_{k}ax_{k}|x|^{b-2}|u|^{p}(I_{\alpha}*|\cdot|^{b}|u|^{p}) dx+\frac{p-2}p{\int}_{\mathbb{R}^{N}}\partial_{k}a|x|^{b}(I_{\alpha}*|\cdot|^{b}|u|^{p})\partial_{k}(|u|^{p}) dx\\ &&+(\alpha-N){\int}_{\mathbb{R}^{N}}\partial_{k}a|x|^{b}|u|^{p}\left( \frac{x_{k}}{|\cdot|^{2}}I_{\alpha}*|\cdot|^{b}|u|^{p}\right) dx. \end{array} $$

Write

$$ \begin{array}{@{}rcl@{}} (B) &:=&{\int}_{\mathbb{R}^{N}}\partial_{k}a|x|^{b}(I_{\alpha}*|\cdot|^{b}|u|^{p})\partial_{k}(|u|^{p}) dx\\ &=&-{\int}_{\mathbb{R}^{N}}{\Delta} a|x|^{b}|u|^{p}(I_{\alpha}*|\cdot|^{b}|u|^{p}) dx-(\alpha-N){\int}_{\mathbb{R}^{N}}\partial_{k} a\left( \frac{x_{k}}{|\cdot|^{2}}I_{\alpha}*|\cdot|^{b}|u|^{p}\right)|x|^{b}|u|^{p} dx\\ &-&b{\int}_{\mathbb{R}^{N}}\partial_{k}a(I_{\alpha}*|\cdot|^{b}|u|^{p})x_{k}|x|^{b-2}|u|^{p} dx. \end{array} $$

So,

$$ \begin{array}{@{}rcl@{}} (A) &=&(\alpha-N){\int}_{\mathbb{R}^{N}}\partial_{k}a(\frac{x_{k}}{|\cdot|^{2}}I_{\alpha}*|\cdot|^{b}|u|^{p})|x|^{b}|u|^{p} dx+b{\int}_{\mathbb{R}^{N}}\partial_{k}ax_{k}|x|^{b-2}|u|^{p}(I_{\alpha}*|\cdot|^{b}|u|^{p}) dx\\ &+&\frac{p-2}p(B)\\ &=&(\alpha-N){\int}_{\mathbb{R}^{N}}\partial_{k}a|x|^{b}|u|^{p}\left( \frac{x_{k}}{|\cdot|^{2}}I_{\alpha}*|\cdot|^{b}|u|^{p}\right) dx+b{\int}_{\mathbb{R}^{N}}\partial_{k}ax_{k}|x|^{b-2}|u|^{p}(I_{\alpha}*|\cdot|^{b}|u|^{p}) dx\\ &-&\frac{p-2}p\Big({\int}_{\mathbb{R}^{N}}{\Delta} a|x|^{b}|u|^{p}(I_{\alpha}*|\cdot|^{b}|u|^{p}) dx+(\alpha-N){\int}_{\mathbb{R}^{N}}\partial_{k} a|x|^{b}|u|^{p}\left( \frac{x_{k}}{|\cdot|^{2}}I_{\alpha}*|\cdot|^{b}|u|^{p}\right) dx\\ &+&b{\int}_{\mathbb{R}^{N}}\partial_{k}ax_{k}|x|^{b-2}|u|^{p}(I_{\alpha}*|\cdot|^{b}|u|^{p}) dx\Big)\\ &=&\frac{2}p\Big((\alpha - N){\int}_{\mathbb{R}^{N}}\partial_{k}a|x|^{b}|u|^{p}\left( \frac{x_{k}}{|\cdot|^{2}}I_{\alpha}*|\cdot|^{b}|u|^{p}\right) dx + b{\int}_{\mathbb{R}^{N}}\partial_{k}ax_{k}|x|^{b-2}|u|^{p}(I_{\alpha}*|\cdot|^{b}|u|^{p}) dx\Big)\\ &-&\frac{p-2}p{\int}_{\mathbb{R}^{N}}{\Delta} a|x|^{b}|u|^{p}(I_{\alpha}*|\cdot|^{b}|u|^{p}) dx. \end{array} $$

Finally,

$$ \begin{array}{@{}rcl@{}} V^{\prime\prime}_{a} &=&4{\int}_{\mathbb{R}^{N}}\partial_{l}\partial_{k}a\Re(\partial_{k}u\partial_{l}\bar u) dx-{\int}_{\mathbb{R}^{N}}{\Delta}^{2}a|u|^{2} dx-\frac{2(p-2)}p{\int}_{\mathbb{R}^{N}}{\Delta} a|x|^{b}|u|^{p}(I_{\alpha}*|\cdot|^{b}|u|^{p}) dx\\ &&+\frac{4}p\left( (\alpha-N){\int}_{\mathbb{R}^{N}}\partial_{k}a(\frac{x_{k}}{|\cdot|^{2}}I_{\alpha}*|\cdot|^{b}|u|^{p})|x|^{b}|u|^{p} dx\right.\\&&+b{\int}_{\mathbb{R}^{N}}\partial_{k}ax_{k}(I_{\alpha}*|\cdot|^{b}|u|^{p})|x|^{b-2}|u|^{p} dx\Big). \end{array} $$

This completes the proof.

1.2 Proof of Lemma 4.2

Denote, for \(D\subset \mathbb {R}^{N}\), \(S_{T}(D):=\cap _{(q,r)\in {\Gamma }}{L^{q}_{T}}(L^{r}(D))\). With Duhamel formula and Strichartz estimates, one gets

$$ \begin{array}{@{}rcl@{}} (E) &:=&\|\left\langle -e^{i.{\Delta}}u_{0}+u\right\rangle\|_{S(0,T)}\\ &\lesssim&\||x|^{b}|u|^{p-1}[I_{\alpha}*|\cdot|^{b}|u|^{p}]\|_{S_{T}^{\prime}(|x|<1)}+\|\nabla\Big(|x|^{b}|u|^{p-2}[I_{\alpha}*|\cdot|^{b}|u|^{p}]u\Big)\|_{S_{T}^{\prime}(|x|<1)}\\ &+&\||x|^{b}|u|^{p-1}[I_{\alpha}*|\cdot|^{b}|u|^{p}]\|_{S_{T}^{\prime}(|x|>1)}+\|\nabla\Big(|x|^{b}|u|^{p-2}[I_{\alpha}*|\cdot|^{b}|u|^{p}]u\Big)\|_{S_{T}^{\prime}(|x|>1)}\\ \end{array} $$

Take \(\mu _{1}:=(\frac N{-b})^{-}\), \(r_{1}:=\frac {2Np}{\alpha +N-\frac {2N}{\mu _{1}}}\) and (q1,r1) ∈Γ. Then, \(1+\frac \alpha N=\frac 2{\mu _{1}}+\frac {2p}{r_{1}}\) and using Hölder and Hardy-Littlewood-Sobolev inequalities, one gets for 𝜃1 := q1 − 2,

$$ \begin{array}{@{}rcl@{}} (A_{1}) & := & \|\mathcal {N}_{1}\|s_{T}^{\prime}(|x|{<}1)\\ &\lesssim&\|(I_{\alpha}*|\cdot|^{b}|u|^{p})|x|^{b}|u|^{p-1}\|_{L^{q_{1}^{\prime}}_{T}(L^{r^{\prime}_{1}}(|x|<1))}\\\\ &\lesssim&\||x|^{b}\|_{L^{\mu}(|x|<1)}^{2}\|\|u\|_{r_{1}}^{2p-1}\|_{L^{q^{\prime}_{1}}(0,T)}\\ &\lesssim&\|u\|_{L^{\infty}_{T}(L^{r_{1}})}^{2(p-1)-\theta_{1}}\|u\|_{L^{q_{1}}_{T}(L^{r_{1}})}^{1+\theta_{1}}, \end{array} $$

The condition p > p gives \((2p-1)q^{\prime }_{1}>q_{1}\) and

$$0<\theta_{1}<2(p-1).$$

Moreover, p ∈ (p,p) implies that \(2<r_{1}<\frac {2N}{N-2}\). Now, compute

$$ \begin{array}{@{}rcl@{}} (F) &:=&|\nabla(|x|^{b}|u|^{p-2}(I_{\alpha} *|\cdot|^{b}|u|^{p})u)|\\ &\lesssim& ||x|^{b}|u|^{p-2}(I_{\alpha}*|\cdot|^{b}|u|^{p})\nabla u|+||x|^{b}|u|^{p-1}(I_{\alpha} *|\cdot|^{b}\Re(\nabla u\bar u)|u|^{p-2})|\\ &&+||x|^{b-1}|u|^{p-1}(I_{\alpha}*|\cdot|^{b}|u|^{p})|+||x|^{b}|u|^{p-1}(I_{\alpha}*|\cdot|^{b-1}|u|^{p})|. \end{array} $$

The first and second terms are controlled as previously.

$$ \begin{array}{@{}rcl@{}} (B_{1}) &\!:=\!&\||x|^{b}|u|^{p-2}(I_{\alpha}*|\cdot|^{b}|u|^{p})\nabla u\|_{S_{T}^{\prime}(|x|<1)} + \||x|^{b}|u|^{p-1}(I_{\alpha} *|\cdot|^{b}\Re(\nabla u\bar u)|u|^{p-2})\|_{S_{T}^{\prime}(|x|<1)}\\ &\!\lesssim\!&\|u\|_{L^{\infty}_{T}(L^{r_{1}})}^{2(p-1)-\theta_{1}}\|u\|_{L^{q_{1}}_{T}(W^{1,r_{1}})}^{1+\theta_{1}}. \end{array} $$

Choosing \(\rho :=(\frac N{1-2b})^{-}\) and \(r_{2}:=\frac {2Np}{1+N+\alpha -\frac N\rho }=\Big (\frac {2Np}{N+\alpha +2b}\Big )^{+}\), one has

$$1+\frac\alpha N=\frac{1}{r_{2}}+\frac1{\rho}+\frac{2(p-1)}{r_{2}}+\frac{1}{r_{2}}-\frac1N.$$

Since \(\frac 1\rho :=(\frac {1-b}N)^{+}+(\frac {-b}N)^{+}:=\frac 1{a_{1}}+\frac 1{a_{2}}\), by Lemma 2.13 and Hölder inequality, one gets

$$ \begin{array}{@{}rcl@{}} (B_{2}) &:=&\||x|^{b-1}|u|^{p-1}(I_{\alpha}*\chi_{|{\cdot}|<1}|\cdot|^{b}|u|^{p})\|_{L^{q_{2}^{\prime}}_{T}(L^{r_{2}^{\prime}}(|x|<1))}\\ &&+\||x|^{b}|u|^{p-1}(I_{\alpha}*\chi_{|{\cdot}|<1}|\cdot|^{b-1}|u|^{p})\|_{L^{q_{2}^{\prime}}_{T}(L^{r_{2}^{\prime}}(|x|<1))}\\ &\lesssim&\|\||x|^{b}\|_{L^{a_{1}}(|x|<1)}\||x|^{b-1}\|_{L^{a_{2}}(|x|<1)}\|u\|_{r_{2}}^{2(p-1)}\|u\|_{\frac{Nr_{2}}{N-r_{2}}}\|_{L^{q_{2}^{\prime}}(0,T)}\\ &\lesssim&\|u\|_{L^{\infty}_{T}(L^{r_{2}})}^{2(p-1)-\theta_{2}}\|u\|_{L^{q_{2}}_{T}(W^{1,r_{2}})}^{1+\theta_{2}}, \end{array} $$

where \((1+\theta _{2})q_{2}^{\prime }=q_{2}\) and (q2,r2) ∈Γ. The condition p ∈ (p,p) gives 2 < q2 < 2p which is equivalent to 0 < 𝜃2 < 2(p − 1).

The estimation of the terms in the complementary of the unit ball follow similarly. This finishes the proof.

1.3 Proof of Lemma 4.3

Let us start with proving the estimate

$$\|\mathcal N\|_{S^{\prime}(I)}\lesssim\|u\|_{L^{\infty}(I,H^{1})}^{\theta}\|u\|_{S^{s_{c}}(I)}^{2(p-1)-\theta}\|u\|_{S(I)}.$$

Take 0 < 𝜃 << 1 and the pairs

$$ \begin{array}{@{}rcl@{}} (q,r)&:=&\Big(\frac{4(p-1)(2p-\theta)}{2(p-1)B-\theta(B-2)},\frac{2N(p-1)(2p-\theta)}{2(p-1)(Np-B)+\theta(B-2-N(p-1))}\Big)\in{\Gamma};\\ (a,r)&:=&\Big(\frac{2(p-1)(2p-\theta)}{2p-B},r\Big)\in{\Gamma}_{s_{c}};\\ (d,r)&:=&\Big(\frac{2(p-1)(2p-\theta)}{2p(B-1)-B+-\theta(B-2)},r\Big)\in{\Gamma}_{-s_{c}}. \end{array} $$

Take two real numbers μ > 0 and \(r_{1}:=\frac {2N}{N-2}\) such that

$$1+\frac\alpha N=\frac2\mu+\frac{2p-\theta}r+\frac\theta{r_{1}}.$$

By Lemma 2.13 and Hölder estimate, one obtains

$$\|\mathcal{N}_{1}\|_{L^{r^{\prime}}(|x|<1)}\leq\||x|^{b}\|_{L^{\mu}(|x|<1)}^{2}\|u\|_{r_{1}}^{\theta}\|u\|_{r}^{2p-1-\theta}.$$

Then, p < p gives

$$\frac{N}{\mu}+b=\frac{\theta}{2}\Big(\frac{2+b}{2(p-1)}-\frac{N}{r_{1}}\Big)=\frac{\theta}{4}\Big(\frac{2+\alpha+2b}{p-1}-N+2\Big)>0.$$

Thus, one gets

$$ \begin{array}{@{}rcl@{}} \|\mathcal{N}_{1}\|_{L^{r^{\prime}}(|x|<1)} &\lesssim&\|u\|_{r_{1}}^{\theta}\|u\|_{r}^{2p-1-\theta}\\ &\lesssim&\|u\|_{H^{1}}^{\theta}\|u\|_{r}^{2p-1-\theta}. \end{array} $$

So, taking account of the equality \(\frac 1{q^{\prime }}=\frac {2(p-1)-\theta }a+\frac 1q\), one gets

$$ \begin{array}{@{}rcl@{}} \|\mathcal{N}_{1}\|_{L^{q^{\prime}}(I,L^{r^{\prime}}(|x|<1))} &\lesssim&\|u\|_{L^{\infty}(I,H^{1})}^{\theta}\|u\|_{L^{a}(I,L^{r})}^{2p-2-\theta}\|u\|_{L^{q}(I,L^{r})}\\ &\lesssim&\|u\|_{L^{\infty}(I,H^{1})}^{\theta}\|u\|_{S^{s_{c}}(I)}^{2p-2-\theta}\|u\|_{S(I)}. \end{array} $$

The estimate on the complementary of the ball follows similarly. This proves the first point. Now, one estimates

$$ \begin{array}{@{}rcl@{}} \|\nabla\mathcal N\|_{S^{\prime}(I)} &\lesssim&\||x|^{b}|u|^{p-1}(I_{\alpha}*|\cdot|^{b}|u|^{p-1}\nabla u)\|_{S^{\prime}(I)}\\ &&+\||x|^{b}|u|^{p-1}(I_{\alpha}*|\cdot|^{b-1}|u|^{p})\|_{S^{\prime}(I)}\\ &&+\||x|^{b}|u|^{p-2}(I_{\alpha}*|\cdot|^{b}|u|^{p})\nabla u\|_{S^{\prime}(I)}\\ &&+\||x|^{b-1}|u|^{p-1}(I_{\alpha}*|\cdot|^{b}|u|^{p})\|_{S^{\prime}(I)}\\ &:=&(I)+(II)+(III)+(IV). \end{array} $$

Using the above calculus, one has

$$(I)+(III)\lesssim\|u\|_{L^{\infty}(I,H^{1})}^{\theta}\|u\|_{S^{s_{c}}(I)}^{2p-2-\theta}\|\nabla u\|_{S(I)}.$$

The rest of the proof discusses two cases. First, let us take N = 3 and estimate the term

$$ \begin{array}{@{}rcl@{}} (II_{1}) &\lesssim&\||x|^{b}|u|^{p-1}(I_{\alpha}*\chi_{|{\cdot}|<1}|\cdot|^{b-1}|u|^{p})\|_{L^{2}(I,L^{\frac{6}{5}}(|x|<1))}\\ &\lesssim&\|\||x|^{b-1}\|_{L^{\mu_{1}}(|x|<1)}\||x|^{b}\|_{L^{\mu_{2}}(|x|<1)}\|u\|_{r_{1}}^{\theta}\|u\|_{r_{2}}^{2(p-1)-\theta}\|u\|_{r_{3}}^{\gamma}\|u\|_{6}^{1-\gamma}\|_{L^{2}(I)}\\ &\lesssim&\|\||x|^{b-1}\|_{L^{\mu_{1}}(|x|<1)}\||x|^{b}\|_{L^{\mu_{2}}(|x|<1)}\|u\|_{r_{1}}^{\theta}\|\nabla u\|_{n}^{2(p-1)-\theta}\|\nabla u\|_{n}^{\gamma}\|u\|_{H^{1}}^{1-\gamma}\|_{L^{2}(I)}. \end{array} $$

Here,

$$ \begin{array}{@{}rcl@{}} \frac56+\frac\alpha3 &=&\frac1{\mu_{1}}+\frac1{\mu_{2}}+\frac\theta{r_{1}}+\frac{2p-2-\theta}{r_{2}}+\frac\gamma{r_{3}}+\frac{1-\gamma}{6}\\ &:=&\frac1{\mu}+\frac\theta{r_{1}}+(2p-2-\theta+\gamma)(\frac1n-\frac13)+\frac{1-\gamma}{6}. \end{array} $$

Choose

$$ \begin{array}{@{}rcl@{}} -2b&<&\gamma<1,\quad 0<\epsilon<2b+\gamma;\\ \theta&:=&\frac{(2-\epsilon+\gamma+4b)(p-1)}{2+2b};\\ \frac{6\theta}{r_{1}}&:=&\frac{(2+2b+\alpha)\theta}{p-1}+2p-4-\theta+\gamma-\epsilon;\\ \frac1n&:=&\frac13+\frac\epsilon{6(2p-2-\theta+\gamma)}. \end{array} $$

This gives 0 < 𝜃 < 2(p − 1). The conditions \(|x|^{b-1}\in L^{\mu _{1}}\) and \(|x|^{b}\in L^{\mu _{2}}\) are satisfied if \(\frac N{\mu }+2b-1>0\). Compute

$$ \begin{array}{@{}rcl@{}} \frac N{\mu}+2b-1 &=&\frac3{\mu}+2b-1\\ &=&2b-1+\alpha+\frac52-3\Big(\frac\theta{r_{1}}+(2p-2-\theta+\gamma)(\frac1n-\frac13)+\frac{1-\gamma}{6}\Big)\\ &=&2b+1+\alpha-\frac{3\theta}{r_{1}}-(2p-2-\theta+\gamma)(\frac3n-1)+\frac{\gamma}2. \end{array} $$

Thus,

$$ \begin{array}{@{}rcl@{}} \frac N{\mu}+2b-1 &=&2b+1+\alpha-\frac{1}{2}\Big(\frac{(2+2b+\alpha)\theta}{p-1}+2p-4-\theta+\gamma-\epsilon\Big)\\ &&-(2p-2-\theta+\gamma)\frac\epsilon{2(2p-2-\theta+\gamma)}+\frac{\gamma}2\\ &=&2b+1+\alpha-\frac{1}{2}\Big(\frac{(2+2b+\alpha)\theta}{p-1}+2p-4-\theta\Big)\\ &=&2b+2+\alpha-(p-1)+\frac\theta2-\frac{(2+2b+\alpha)\theta}{2(p-1)}\\ &=&2b+2+\alpha+2(p-1)-\theta-3(p-1)+\theta\Big(\frac{3}2-\frac{2+2b+\alpha}{2(p-1)}\Big)\\ &=&2(p-1)-\theta-2(p-1)\Big(\frac{3}{2}-\frac{2+2b+\alpha}{2(p-1)}\Big)+\theta\Big(\frac{3}2-\frac{2+2b+\alpha}{2(p-1)}\Big)\\ &=&(1-s_{c})\Big(2(p-1)-\theta\Big)>0. \end{array} $$

This gives

$$ \begin{array}{@{}rcl@{}} (II_{1}) &\lesssim&\|\|u\|_{r_{1}}^{\theta}\|\nabla u\|_{n}^{2(p-1)-\theta+\gamma}\|u\|_{H^{1}}^{1-\gamma}\|_{L^{2}(I)}. \end{array} $$

Now, let the real numbers

$$m:=\frac{4(2p-2-\theta+\gamma)}{2p-2-\theta+\gamma-\varepsilon}\quad\text{and}\quad q_{1}:=\frac{4\theta}{2+\epsilon-(2p-2-\theta+\gamma)}.$$

Thus,

$$ \begin{array}{@{}rcl@{}} (m,n)\in{\Gamma}, \quad (q_{1},r_{1})\in{\Gamma}_{s_{c}};\\ \frac{1}{2}=\frac{\theta}{q_{1}}+\frac{2p-2-\theta+\gamma}{m}. \end{array} $$

Thus, by Hölder estimate, one gets

$$ \begin{array}{@{}rcl@{}} (II_{1}) &\lesssim&\|\|u\|_{r_{1}}^{\theta}\|\nabla u\|_{n}^{2(p-1)-\theta+\gamma}\|u\|_{H^{1}}^{1-\gamma}\|_{L^{2}(I)}\\ &\lesssim&\|u\|_{L^{q_{1}}(I,L^{r_{1}})}^{\theta}\|\nabla u\|_{L^{m}(I,L^{n})}^{2(p-1)-\theta+\gamma}\|u\|_{L^{\infty}(I,H^{1})}^{1-\gamma}\\ &\lesssim&\|u\|_{L^{\infty}(I,H^{1})}^{1-\gamma}\|u\|_{S^{s_{c}}(I)}^{\theta}\|\nabla u\|_{S(I)}^{2(p-1)-\theta+\gamma}. \end{array} $$

The estimate on the complementary of the unit ball and the term (IV ) follow similarly. Let us treat the case N > 3 and estimate the term (II1). Take the admissible pairs

$$ \begin{array}{@{}rcl@{}} (q,r)&:=&\left( \frac{2(2p-\theta)}{s_{c}(2p-\theta)+2(1-s_{c})},\frac{2N(2p-\theta)}{(N-2s_{c})(2p-\theta)-4(1-s_{c})}\right)\in{\Gamma};\\ (a,r)&:=&\left( \frac{2p-\theta}{1-s_{c}},r\right)\in{\Gamma}_{s_{c}}. \end{array} $$

By Lemma 2.13 and Hölder estimate, one obtains

$$ \begin{array}{@{}rcl@{}} (II_{1}) &\lesssim&\||x|^{b}|u|^{p-1}(I_{\alpha}*\chi_{|{\cdot}|<1}|\cdot|^{b-1}|u|^{p})\|_{L^{q^{\prime}}(I,L^{r^{\prime}}(|x|<1))}\\ &\lesssim&\|\||x|^{b-1}\|_{L^{\mu_{1}}(|x|<1)}\||x|^{b}\|_{L^{\mu_{2}}(|x|<1)}\|u\|_{2^{*}}^{\theta}\|u\|_{r}^{2p-2-\theta}\|u\|_{\frac{Nr}{N-r}}\|_{L^{q^{\prime}}(I)}\\ &\lesssim&\|\||x|^{b-1}\|_{L^{\mu_{1}}(|x|<1)}\||x|^{b}\|_{L^{\mu_{2}}(|x|<1)}\|u\|_{2^{*}}^{\theta}\| u\|_{r}^{2p-2-\theta}\|\nabla u\|_{r}\|_{L^{q^{\prime}}(I)}. \end{array} $$

Here,

$$ \begin{array}{@{}rcl@{}} 1+\frac\alpha N &=&\frac1r+\frac1{\mu_{1}}+\frac1{\mu_{2}}+\frac\theta{2^{*}}+\frac{2p-2-\theta}{r}+\frac1r-\frac1N\\ &:=&\frac1{\mu}+\frac\theta{2^{*}}+\frac{2p-\theta}{r}-\frac1N. \end{array} $$

Compute

$$ \begin{array}{@{}rcl@{}} \frac N\mu+2b-1 &=&\alpha+N+2b-\theta(\frac N2-1)-\frac{N(2p-\theta)}{r}\\ &=&\alpha+N+2b-\theta(\frac N2-1)-\frac{(N-2s_{c})(2p-\theta)-4(1-s_{c})}2\\ &=&\alpha+N+2b-\theta(1-s_{c})-(p-1)(N-2s_{c})-(N-2s_{c})+2(1-s_{c})\\ &=&\alpha+N+2b-\theta(1-s_{c})-(2+\alpha+2b)+2-N\\ &=&\theta(1-s_{c})>0. \end{array} $$

This implies, via the equality \(\frac 1{q^{\prime }}=\frac 1q+\frac {2p-2-\theta }a\), that

$$ \begin{array}{@{}rcl@{}} (II_{1}) &\lesssim&\|\|u\|_{2^{*}}^{\theta}\| u\|_{r}^{2p-2-\theta}\|\nabla u\|_{r}\|_{L^{q^{\prime}}(I)}\\ &\lesssim&\|u\|_{L^{\infty}(I,H^{1})}^{\theta}\|u\|_{L^{a}(I,L^{r})}^{2p-2-\theta}\|\nabla u\|_{L^{q}(I,L^{r})}\\ &\lesssim&\|u\|_{L^{\infty}(I,H^{1})}^{\theta}\|u\|_{S^{s_{c}}(I)}^{2p-2-\theta}\|\nabla u\|_{S(I)}\\ \end{array} $$

This ends the proof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saanouni, T., Xu, C. Scattering Theory for a Class of Radial Focusing Inhomogeneous Hartree Equations. Potential Anal 58, 617–643 (2023). https://doi.org/10.1007/s11118-021-09952-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-021-09952-x

Keywords

Mathematics Subject Classification (2010)

Navigation