Skip to main content
Log in

On the Relation Between the Girsanov Transform and the Kolmogorov Equations for SPDEs

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

The Girsanov transform and Kolmogorov equations are two useful methods for studying SPDEs. It is shown that, under suitable conditions, the series expansion obtained from the Girsanov transform coincides with the one generated by an iteration scheme for Kolmogorov equations. We also apply the iteration approach to extend the well posedness theory for Kolmogorov equations beyond the boundedness condition on the nonlinear term.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barbu, V., Bogachev, V. I., Da Prato, G., Röckner, M.: Weak solutions to the stochastic porous media equation via Kolmogorov equations: The degenerate case. J. Funct. Anal. 237, 54–75 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Billingsley, P.: Convergence of Probability Measures. Second Edition. Wiley Series in Probability and Statistics: Probability and Statistics. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York (1999)

    Google Scholar 

  3. Bogachev, V.I., Krylov, N.V., Röckner, M., Shaposhnikov, S.V.: Fokker–Planck–Kolmogorov Equations, Math Surveys Monogr. 207, AMS, Providence, RI (2015)

  4. Cerrai, S.: A Hille-Yosida Theorem for weakly continuous semigroups. Semigroup Forum 49, 349–367 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cerrai, S.: Weakly continuous semigroups in the space of functions with polynomial growth. Dynam. Systems Appl. 4, 351–372 (1995)

    MathSciNet  MATH  Google Scholar 

  6. Cosso, A., Federico, S., Gozzi, F., Rosestolato, M., Touzi, N.: Path-dependent equations and viscosity solutions in infinite dimension. Ann. Probab. 46 (1), 126–174 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  7. Da Prato, G.: Kolmogorov Equations for Stochastic PDEs. Advanced Courses in Mathematics. CRM Barcelona, Birkhauser Verlag, Basel̈ (2004)

  8. Da Prato, G.: Introduction to Stochastic Analysis and Malliavin Calculus. Terza edizione, Edizioni della Normale (2014)

    Book  MATH  Google Scholar 

  9. Da Prato, G., Flandoli, F.: Pathwise uniqueness for a class of SDE in Hilbert spaces and applications. J. Funct. Anal. 259, 243–267 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Da Prato, G., Flandoli, F., Priola, E., Röckner, M.: Strong uniqueness for stochastic evolution equations in Hilbert spaces perturbed by a bounded measurable drift. Ann. Probab. 41(5), 3306–3344 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Da Prato, G., Flandoli, F., Priola, E., Röckner, M.: Strong uniqueness for stochastic evolution equations with unbounded measurable drift term. J. Theoret. Probab. 28(4), 1571–1600 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Da Prato, G., Flandoli, F., Röckner, M., Veretennikov, A. Y. u.: Strong uniqueness for SDEs in Hilbert spaces with nonregular drift. Ann. Probab. 44(3), 1985–2023 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Da Prato, G., Zabczyk, J.: Stochastic equations in infinite dimensions. Cambridge University Press, Cambridge (1992)

    Book  MATH  Google Scholar 

  14. Da Prato, G., Zabczyk, J.: Second Order Partial Differential Equations in Hilbert Spaces London Mathematical Society Lecture Note Series, 293. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  15. Fabbri, G., Gozzi, F., Świȩch, A.: Stochastic Optimal Control in Infinite Dimension. Dynamic Programming and HJB Equations. With a Contribution by Marco Fuhrman and Gianmario Tessitore Probability Theory and Stochastic Modelling, 82. Springer, Cham (2017)

  16. Flandoli, F.: Random Perturbation of PDEs and Fluid Dynamic Models, Écolé d’Été de probabilités de Saint-Flour XL - 2010 Lecture Notes in Mathematics (2015)

  17. Flandoli, F., Gozzi, F.: Kolmogorov equation associated to a stochastic Navier–Stokes equation. J. Funct. Anal. 160, 312–336 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. Flandoli, F, Luo, D, Ricci, C: A numerical approach to Kolmogorov equation in high dimension based on Gaussian analysis. J. Math. Anal. Appl. 493 (1), 124505, 29 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  19. Flandoli, F., Zanco, G.: An infinite-dimensional approach to path-dependent Kolmogorov equations. Ann. Probab. 44(4), 2643–2693 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Goldys, B., Gozzi, F.: Second order parabolic Hamilton-Jacobi-Bellman equations in Hilbert spaces and stochastic control: L2 approach. Stochastic Process. Appl. 116(12), 1932–1963 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gozzi, F., Masiero, F.: Stochastic optimal control with delay in the control II: Verification theorem and optimal feedbacks. SIAM J. Control Optim. 55 (5), 2981–3012 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kohatsu-Higa, A., Yûki, G.: Stochastic formulations of the parametrix method. ESAIM: PS 22, 178–209 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  23. Krylov, N.V., Röckner, M., Zabczyk, J.: Stochastic PDE’s and Kolmogorov equations in infinite dimensions, G. Da Prato, Ed., Fond. CIME/CIME Found Subser. Springer, Berlin (1999)

    Book  Google Scholar 

  24. Röckner, M., Sobol, Z.: Kolmogorov equations in infinite dimensions: well-posedness and regularity of solutions, with applications to stochastic generalized Burgers equations. Ann. Probab. 34(2), 663–727 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are deeply grateful to the referee for reading carefully the paper and for many enlightening comments which help us with improving the presentation. The second named author would like to thank the financial supports of the National Key R&D Program of China (No. 2020YFA0712700), National Natural Science Foundation of China (Nos. 11688101, 11931004, 12090014), and the Youth Innovation Promotion Association, CAS (2017003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dejun Luo.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix:: Some Moment Estimates on Gaussian Measures

Appendix:: Some Moment Estimates on Gaussian Measures

We have the following estimate on the moments of \(\mu = N_{Q_{\infty }} = N_{0, Q_{\infty }}\).

Lemma 4.1

For any \(n\in \mathbb N\),

$$ {\int}_{H} |x|^{2n} \mathrm{d}\mu(x) \leq 2^{n} (n!) (\text{Tr} Q_{\infty})^{n}. $$
(1)

Proof

To save notation we write Q instead of \(Q_{\infty }\) in the proof below. We use the following fact (see [8, Proposition 1.13]):

$$F(s):= {\int}_{H} e^{s|x|^{2}} \mathrm{d}\mu(x)= \big[\det(1-2s Q) \big]^{-1/2}, \quad s< 1/(2\lambda_{1}), $$

where λ1 > 0 is the biggest eigenvalue of Q. It is clear that

$$ F^{(n)}(0)= {\int}_{H} |x|^{2n} \mathrm{d}\mu(x). $$
(2)

One has the useful identity (see [8, Example 1.15]):

$$F^{\prime}(s)= F(s) \text{Tr}\big(Q(1-2s Q)^{-1}\big). $$

Then by the combinatorial formula,

$$F^{(n+1)}(s) = \frac{\mathrm{d}^{n}}{\mathrm{d} s^{n}} \big[F(s) \text{Tr}\big(Q(1-2s Q)^{-1}\big) \big] = {\sum}_{k=0}^{n} \binom n k F^{(n-k)}(s) \frac{\mathrm{d}^{k}}{\mathrm{d} s^{k}} \text{Tr}\big(Q(1-2s Q)^{-1}\big),$$

where \(\binom n k\) are the combinatorial numbers. Regarding Q as a diagonal matrix and using induction, it is easy to show that

$$\frac{\mathrm{d}^{k}}{\mathrm{d} s^{k}} \text{Tr}\big(Q(1-2s Q)^{-1}\big) = 2^{k} (k!) \text{Tr}\big(Q^{k+1}(1-2s Q)^{-(k+1)}\big). $$

Therefore,

$$F^{(n+1)}(0) = {\sum}_{k=0}^{n} 2^{k} (k!) \binom n k F^{(n-k)}(0) \text{Tr}\big(Q^{k+1} \big).$$

Using the very rough inequality

$$ \text{Tr}\big(Q^{k+1} \big) \leq (\text{Tr} Q)^{k+1}, $$
(3)

we obtain

$$ F^{(n+1)}(0) \leq {\sum}_{k=0}^{n} 2^{k} (k!) \binom n k F^{(n-k)}(0) (\text{Tr} Q)^{k+1}. $$
(4)

Now we prove the assertion by induction. Assume that the estimate Eq. 1 holds for kn; we want to prove it for k = n + 1. Taking into account Eq. 2, this follows immediately from Eq. 4. Indeed, by the induction hypothesis,

$$\aligned F^{(n+1)}(0) &\leq {\sum}_{k=0}^{n} 2^{k} (k!) \binom n k 2^{n-k} ((n-k)!) (\text{Tr} Q)^{n-k} (\text{Tr} Q)^{k+1} \\ &= 2^{n} (\text{Tr} Q)^{n+1} {\sum}_{k=0}^{n} (n!) \leq 2^{n+1} ((n+1)!) (\text{Tr} Q)^{n+1} . \endaligned $$

The proof is complete. □

Remark 4.2

The estimate Eq. 3 looks very rough, but in a sense it is also sharp. For instance, assume that Q is a diagonal matrix and that the entries on the diagonal are decreasing. Let Q22 0 (thus Qii 0 for all i > 2), then \(\text {Tr}\big (Q^{k+1} \big ) \to Q_{11}^{k+1}\) and \((\text {Tr} Q)^{k+1} \to Q_{11}^{k+1}\).

Corollary 4.3

There exists a constant C > 0 such that for any p > 1,

$$\bigg({\int}_{H} |x|^{p} \mathrm{d}\mu(x)\bigg)^{1/p} \leq C(\text{Tr} Q_{\infty})^{1/2} \sqrt{p}.$$

Proof

By Lemma 4.1 and the Stirling formula, for any \(n\in \mathbb N\),

$$\bigg({\int}_{H} |x|^{2n} \mathrm{d}\mu(x) \bigg)^{1/(2n)} \leq (2 \text{Tr} Q_{\infty})^{1/2} (n!)^{1/(2n)} \leq C (\text{Tr} Q_{\infty} )^{1/2} \sqrt{n} . $$

As a result,

$$\bigg({\int}_{H} |x|^{n} \mathrm{d}\mu(x) \bigg)^{1/n} \leq C (\text{Tr} Q_{\infty} )^{1/2} \sqrt{n} . $$

Hence, for any p > 1, denoting by ⌈p⌉ the smallest integer which is greater than p,

$$\bigg({\int}_{H} |x|^{p} \mathrm{d}\mu(x)\bigg)^{1/p} \leq \bigg({\int}_{H} |x|^{\lceil p \rceil} \mathrm{d}\mu(x)\bigg)^{1/\lceil p \rceil} \leq C (\text{Tr} Q_{\infty} )^{1/2} \sqrt{\lceil p \rceil} $$

which implies the desired estimate with the constant \(\sqrt {2} C\). □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Flandoli, F., Luo, D. & Ricci, C. On the Relation Between the Girsanov Transform and the Kolmogorov Equations for SPDEs. Potential Anal 57, 473–500 (2022). https://doi.org/10.1007/s11118-021-09924-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-021-09924-1

Keywords

Mathematics Subject Classification (2010)

Navigation