Skip to main content
Log in

\(W^{s,\frac {n}{s}}\)-maps with positive distributional Jacobians

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

We extend the well-known result that any \(f \in W^{1,n}({\Omega }, \mathbb {R}^{n})\), \({\Omega } \subset \mathbb {R}^{n}\) with strictly positive Jacobian is actually continuous: it is also true for fractional Sobolev spaces \(W^{s,\frac {n}{s}}({\Omega })\) for any \(s \geq \frac {n}{n+1}\), where the sign condition on the Jacobian is understood in a distributional sense. Along the way we also obtain extensions to fractional Sobolev spaces \(W^{s,\frac {n}{s}}\) of the degree estimates known for W1,n-maps with positive or non-negative Jacobian, such as the sense-preserving property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R.A., Fournier, J.J.F.: Sobolev spaces, Volume 140 of Pure and Applied Mathematics (Amsterdam), 2nd edn. Elsevier/Academic Press, Amsterdam (2003)

    Google Scholar 

  2. Ball, J.M.: Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rational Mech. Anal. 63(4), 337–403 (1976/77)

    Article  MathSciNet  Google Scholar 

  3. Bourgain, J., Brezis, H., Mironescu, P.: H1/2 maps with values into the circle: minimal connections, lifting, and the Ginzburg-Landau equation. Publ. Math. Inst. Hautes Études Sci. 99, 1–115 (2004)

    Article  Google Scholar 

  4. Bourgain, J., Brezis, H., Mironescu, P.: Lifting, degree, and distributional Jacobian revisited. Comm. Pure Appl Math. 58(4), 529–551 (2005)

    Article  MathSciNet  Google Scholar 

  5. Brezis, H., Nguyen, H.: The Jacobian determinant revisited. Invent. Math. 185(1), 17–54 (2011)

    Article  MathSciNet  Google Scholar 

  6. Brezis, H., Nirenberg, L.: Degree theory and BMO. I. Compact manifolds without boundaries. Selecta Math. (N.S.) 1(2), 197–263 (1995)

    Article  MathSciNet  Google Scholar 

  7. Bui, H.-Q., Candy, T.: A characterization of the Besov-Lipschitz and Triebel-Lizorkin spaces using Poisson like kernels. In: Functional analysis, harmonic analysis, and image processing: a collection of papers in honor of Björn Jawerth, volume 693 of Contemp. Math., pp. 109–141. Amer. Math. Soc., Providence, RI (2017)

  8. Chanillo, S.: Sobolev inequalities involving divergence free maps. Comm. Part. Differ. Eq. 16(12), 1969–1994 (1991)

    Article  MathSciNet  Google Scholar 

  9. Coifman, R., Lions, P.-L., Meyer, Y., Semmes, S.: Compensated compactness and Hardy spaces. J. Math. Pures Appl. (9) 72(3), 247–286 (1993)

    MathSciNet  MATH  Google Scholar 

  10. Coifman, R.R., Jones, P.W., Semmes, S.: Two elementary proofs of the L2, boundedness of Cauchy integrals on Lipschitz curves. J. Amer. Math Soc. 2(3), 553–564 (1989)

    MathSciNet  MATH  Google Scholar 

  11. Fonseca, I., Gangbo, W.: Degree Theory in Analysis and Applications, Volume 2 of Oxford Lecture Series in Mathematics and Its Applications. The Clarendon Press, Oxford University Press, New York (1995). Oxford Science Publications

    MATH  Google Scholar 

  12. Fonseca, I., Gangbo, W.: Local invertibility of Sobolev functions. SIAM J. Math. Anal. 26(2), 280–304 (1995)

    Article  MathSciNet  Google Scholar 

  13. Gladbach, P., Olbermann, H.: Coarea formulae and chain rules for the Jacobian determinant in fractional Sobolev spaces. J. Funct. Anal. 278(2), 108312, 21 (2020). 2

    Article  MathSciNet  Google Scholar 

  14. Goldstein, P., Hajłasz, P.: Modulus of continuity of orientation preserving approximately differentiable homeomorphisms with a.e. negative Jacobian. Ann. Acad. Sci. Fenn Math. 43(1), 147–170 (2018)

    Article  MathSciNet  Google Scholar 

  15. Goldstein, P., Hajłasz, P., Pakzad, M.R.: Finite distortion Sobolev mappings between manifolds are continuous. Int. Math. Res. Not. IMRN 14, 4370–4391 (2019)

    Article  MathSciNet  Google Scholar 

  16. Goldšteı̆n, V.M., Vodopyanov, S.K.: A test of the removability of sets for \({L^{1}_{p}}\) spaces of quasiconformal and quasi-isomorphic mappings. Sibirsk. Mat. Ž 18 (1), 48–68, 237 (1977)

    MathSciNet  Google Scholar 

  17. Hajłasz, P., Malý, J.: Approximation in Sobolev spaces of nonlinear expressions involving the gradient. Ark. Mat. 40(2), 245–274 (2002)

    Article  MathSciNet  Google Scholar 

  18. Hang, F., Lin, F.: A remark on the Jacobians. Commun Contemp. Math. 2(1), 35–46 (2000)

    Article  MathSciNet  Google Scholar 

  19. Iwaniec, T., Martin, G.: Geometric Function Theory and Non-Linear Analysis. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York (2001)

    Google Scholar 

  20. Jonsson, A., Wallin, H.: A Whitney extension theorem in Lp and Besov spaces. Ann. Inst. Fourier (Grenoble) 28(1), 139–192 (1978). vi

    Article  MathSciNet  Google Scholar 

  21. Lenzmann, E., Schikorra, A.: Sharp commutator estimates via harmonic extensions. Nonlinear Anal. 193, 111375 (2020)

    Article  MathSciNet  Google Scholar 

  22. Lewicka, M., Pakzad, M.R.: Convex integration for the Monge-A,mpère equation in two dimensions. Anal. PDE 10(3), 695–727 (2017)

    Article  MathSciNet  Google Scholar 

  23. Müller, S.: Higher integrability of determinants and weak convergence in L1. J. Reine Angew. Math. 412, 20–34 (1990)

    MathSciNet  MATH  Google Scholar 

  24. Pakzad, M.R.: On the Sobolev space of isometric immersions. J. Differential Geom. 66(1), 47–69 (2004)

    Article  MathSciNet  Google Scholar 

  25. Rešetnjak, J.G.: The weak convergence of completely additive vector-valued set functions. Sibirsk. Mat. Z.̌, 9, 1386–1394 (1968)

    MathSciNet  Google Scholar 

  26. Runst, T., Sickel, W.: Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations, Volume 3 of De Gruyter Series in Nonlinear Analysis and Applications. Walter de Gruyter & Co., Berlin (1996)

    MATH  Google Scholar 

  27. Schikorra, A., Van Schaftingen, J.: An estimate of the Hopf degree of fractional Sobolev mappings. Proc. Amer. Math Soc. 148(7), 2877–2891 (2020)

    Article  MathSciNet  Google Scholar 

  28. Sickel, W., Youssfi, A.: The characterisation of the regularity of the Jacobian determinant in the framework of potential spaces. J. London Math. Soc. (2) 59(1), 287–310 (1999)

    Article  MathSciNet  Google Scholar 

  29. Tartar, L.: Compensated compactness and applications to partial differential equations. In: Nonlinear analysis and mechanics: Heriot-Watt Symposium, Vol. IV, volume 39 of Res. Notes in Math., pp 136–212. Pitman, London (1979)

  30. Tartar, L.: An introduction to Sobolev spaces and interpolation spaces, volume 3 of Lecture Notes of the Unione Matematica Italiana. Springer, Berlin (2007). UMI, Bologna

    Google Scholar 

  31. Šverák, V.: Regularity properties of deformations with finite energy. Arch. Rational Mech. Anal. 100(2), 105–127 (1988)

    Article  MathSciNet  Google Scholar 

  32. Wente, H.C.: An existence theorem for surfaces of constant mean curvature. J. Math. Anal. Appl. 26, 318–344 (1969)

    Article  MathSciNet  Google Scholar 

  33. Zhou, Y.: Fractional Sobolev extension and imbedding. Trans. Amer. Math. Soc. 367(2), 959–979 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work has been done during SL’s stay as a CRM–ISM postdoctoral fellow at Centre de Recherches Mathématiques, Université de Montréal and Institut des Sciences Mathématiques. SL thanks these institutes for their hospitality. AS acknowledges funding by the Simons foundation, grant no 579261.

The authors would like to thank P. Hajłasz for helpful discussions; in particular he told us about Example 1.2 and Example 1.4. The authors also thank the anonymous referees for helpful suggestions on the presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armin Schikorra.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Fractional Sobolev spaces

Appendix A: Fractional Sobolev spaces

We recall results from fractional Sobolev spaces we employ here. Most of them are well-known to most experts.

We begin with proving Lemma 1.3. Lemma 1.3 was (essentially) proven in [28] as an extension of the ground-breaking paper [9], which showed that Jacobians of W1,n-maps can be tested with BMO-maps. The proof in [28] uses Littlewood-Paley theory and paraproducts. In [5] Brezis and Nguyen gave a simpler and more elegant proof of this result for \(s =\frac {n}{n+1}\). We present here the following slight adaptation of their argument from [21].

We restrict our attention to the a priori estimates, from which the claim follows easily due to multi-linearity.

Proof of 1.3 (a priori estimates)

Let \(\varphi \in C_{c}^{\infty }({\Omega })\) and \(f \in C^{\infty }(\overline {{\Omega }})\). Ω is an extension domain, [20, 33], so we may assume that \(f \in W^{s,\frac {n}{s}}(\mathbb {R}^{n}) \cap C^{1}(\mathbb {R}^{n})\). Then

$$ {\int}_{{\Omega}} \det(Df) \varphi = {\int}_{\mathbb{R}^{n}} \det(Df) \varphi. $$

Extend f and φ harmonically to \(\mathbb {R}^{n+1}_{+}\), say to F and Φ respectively. We write \((x,t) \in \mathbb {R}^{n} \times \mathbb {R}_{+} = \mathbb {R}^{n+1}_{+}\). By Stokes’ theorem and Hölder’s inequality,

$$ \begin{array}{@{}rcl@{}} \left |{\int}_{\mathbb{R}^{n}} \det(Df) \varphi \right |&=& \left |{\int}_{\mathbb{R}^{n+1}_{+}} \det(DF|D{\Phi}) \right |\\&\leq& \left ({{\int}_{\mathbb{R}^{n+1}_{+}} |t^{1-\frac{s}{n}-s} DF|^{\frac{n}{s}}} \right )^{s} \left ({{\int}_{\mathbb{R}^{n+1}_{+}} |t^{1-(1-s)-(1-s)n}D{\Phi}|^{\frac{1}{1-s}}} \right )^{1-s}. \end{array} $$

If \(s \in (\frac {n-1}{n},1]\), then (1 − s)n ∈ (0, 1). Then, by trace estimates, see e.g. [21, Proposition 10.2], we have

$$ \left ({{\int}_{\mathbb{R}^{n+1}_{+}} |t^{1-\frac{s}{n}-s} DF|^{\frac{n}{s}}} \right )^{s} \approx [f]_{W^{s,\frac{n}{s}}({{{\Omega}}})}^{n} $$

and

$$ \left ({{\int}_{\mathbb{R}^{n+1}_{+}} |t^{1-(1-s)-(1-s)n}D{\Phi}|^{\frac{1}{1-s}}} \right )^{1-s} \approx [\varphi]_{W^{(1-s)n,1-s}({{\Omega}})}. $$

Here we also used the fact that \([f]_{W^{s,\frac {n}{s}}(\mathbb {R}^{n})} \precsim [f]_{W^{s,\frac {n}{s}}({{\Omega })}}\). This is because Ω is an extension domain; see [20, 33]. We conclude, because we have shown

$$ {\int}_{{\Omega}} \det(Df) \varphi \precsim [f]_{W^{s,\frac{n}{s}}({\Omega})}^{n} [\varphi]_{W^{(1-s)n,1-s}({\Omega})}. $$

The ensuing result on trace operators will be useful for the subsequent developments. For detailed treatments we refer to [26, §2.4.2, Theorem 1], [1, Theorem 7.43, Remark 7.45] and [30, Lemma 36.1].

Lemma A.1 (Trace Theorem)

Let \({\Omega } \subset \mathbb {R}^{n}\) be either bounded or the complement of a bounded set, with smooth boundary. If s ∈ (0, 1), \(p \in (1,\infty )\) with \(s-\frac {1}{p} > 0\), then the trace operator on T = |Ω is a bounded, linear, surjective operator from Ws,p(Ω) to \(W^{s-\frac {1}{p},p}(\partial {\Omega })\). The harmonic extension is a bounded linear right-inverse of T.

The following is well-known for Sobolev functions in W1,p (it is essentially Fubini’s theorem):

Lemma A.2 (Restriction theorem)

For Ω a smooth, bounded domain let fWs,p(Ω). Fix x0 ∈Ω. There exists a representative of f such that for \({\mathscr{L}}^{1}\)-almost every r ∈ (0,dist (x0, Ω)) we have fWs,p(B(x0, r)).

Moreover, for Ω = B(x0, R) we have

$$ \left( {{{\int}_{0}^{R}} [f]_{W^{s,p}(\partial B(x_{0},r))}^{p} dr}\right)^{\frac{1}{p}} \precsim [f]_{W^{s,p}(B(x_{0},R))}. $$

Proof

As Ω is an extension domain, see [20, 33], we may assume that \({\Omega } = \mathbb {R}^{n}\) and \(f \in W^{s,p}(\mathbb {R}^{n})\) with f ≡ 0 outside a compact set. Denote by \(F: \mathbb {R}^{n+1}_{+} \to \mathbb {R}\) the harmonic extension of f, and w.l.o.g. set x0 = 0. Then (see [21, Proposition 10.2])

$$ \left \|(x_{n+1})^{1-\frac{1}{p}-s} DF \right \|_{L^{p}(\mathbb{R}^{n+1}_{+})} \approx [f]_{W^{s,p}(\mathbb{R}^{n})} < \infty. $$

By Fubini’s theorem, for \({\mathscr{L}}^{1}\)-almost every r > 0,

$$ \left \|(x_{n+1})^{1-\frac{1}{p}-s} DF \right \|_{L^{p}(\partial B(r) \times (0,\infty))} < \infty. $$

This implies that fWs,p(B(r)) for almost every r > 0.

The last claim also follows from Fubini’s theorem in \(\mathbb {R}^{n+1}_{+}\):

$$ \begin{array}{@{}rcl@{}} {{\int}_{0}^{R}} [f]_{W^{s,p}(\partial B(x_{0},r))}^{p} dr &\precsim& {{\int}_{0}^{R}} {\int}_{\partial B(x_{0},r) \times (0,\infty)} |(x_{n+1})^{1-\frac{1}{p}-s} DF|^{p} \\&=& {\int}_{B(x_{0},R) \times (0,\infty)} |(x_{n+1})^{1-\frac{1}{p}-s} DF|^{p}. \end{array} $$

Lemma A.3

Let \({\Omega } \subset \mathbb {R}^{n}\) be a bounded domain with smooth boundary. For s ∈ (0, 1), \(p \in (1,\infty )\) such that \(s-\frac {1}{p} > 0\):

  1. (1)

    If fWs,p(Ω) and \(g \in W^{s,p}(\mathbb {R}^{n} \backslash {\Omega })\) with f = g on Ω in the trace sense. Then

    $$ h := \begin{cases} f \quad & \text{in} {\Omega}\\ g \quad &\text{in} \mathbb{R}^{n} \backslash {\Omega} \end{cases} $$

    belongs to the Sobolev space and

    $$ [h]_{W^{s,p}(\mathbb{R}^{n})} \leq C({\Omega}) \left( [f]_{W^{s,p}({\Omega})} + [g]_{W^{s,p}(\mathbb{R}^{n}\setminus{\Omega})}\right). $$
  2. (2)

    In particular, if fWs,p(Ω) satisfies f = 0 on Ω in the trace sense, then \(f\in W^{s,p}_{0}({\Omega })\) and that

    $$ h := \begin{cases} f \quad &\text{in} {\Omega}\\ 0 \quad &\text{in} \mathbb{R}^{n} \backslash {\Omega} \end{cases} $$

    belongs to \(W^{s,p}(\mathbb {R}^{n})\).

Lemma A.4

Let B(R) be a ball in \(\mathbb {R}^{n}\). Let \(f \in W^{s,\frac {n}{s}}(B(R))\) for some s ∈ (0, 1) and f|B(R)C0(B(R)). Then there exists an approximation \(f_{k} \in C^{\infty }_{c} (\mathbb {R}^{n})\) converging to f in \(W^{s,\frac {n}{s}}(B(R))\) and \(f_{k} \rightrightarrows f\) uniformly on B(R).

Proof

W.l.o.g. B(R) = B := B(0, 1).

By the trace theorem, Lemma A.1, \(f \in W^{s-\frac {n}{s},\frac {n}{s}}(\partial B)\). Let g be the harmonic extension of f to \(\mathbb {R}^{n} \backslash B\). Then \(g \in W^{s,\frac {n}{s}}(\mathbb {R}^{n} \backslash B)\), again by Lemma A.1. Also, since f is continuous on B, g is also continuous. Set

$$ h := \begin{cases} g \quad &\text{in }\mathbb{R}^{n} \backslash B,\\ f \quad &\text{in }B.\\ \end{cases} $$

By Lemma A.3, \(h \in W^{s,\frac {n}{s}}(\mathbb {R}^{n})\) and h is locally uniformly continuous on \(\mathbb {R}^{n} \backslash B\). This last fact implies that

$$ h_{k}(x) := h\left ({\frac{k+1}{k}(x)} \right ) $$

converges uniformly to h on B as \(k \to \infty \), and also in \(W^{s,\frac {n}{s}}_{loc}(\mathbb {R}^{n})\).

Now let us consider the standard mollification fε := hkηε. For ε small enough in comparison with \(\frac {1}{k}\), fε converges uniformly on B to f and in \(W^{s,\frac {n}{s}}(B))\). This completes the proof. □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Schikorra, A. \(W^{s,\frac {n}{s}}\)-maps with positive distributional Jacobians. Potential Anal 55, 403–417 (2021). https://doi.org/10.1007/s11118-020-09862-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-020-09862-4

Keywords

Mathematics Subject Classification (2010)

Navigation