Skip to main content
Log in

Classification of Nonnegative g −Harmonic Functions in Half-Spaces

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

In this paper we present a short proof of the following classification Theorem for g −harmonic functions in half-spaces. Assume that u is a nonnegative solution to Δgu = 0 in {xn > 0} that continuously vanishes on the flat boundary {xn = 0}. Then, modulo normalization, u(x) = xn in {xn ≥ 0}. Our proof depends on a recent quantitative version of the Hopf-Oleı̆nik Lemma proven by the authors in Braga and Moreira (Adv. Math.334, 184–242, 2018). Moreover, in this paper, we show how to adapt the proofs in the literature to extend Carleson Estimate, Boundary Harnack Inequality and Schwartz Reflection Principle to the context of nonnegative g −harmonic functions. These results are also ingredients for the proof of the main result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Indeed, \(w\in L^{\infty }(B_{R}).\)

  2. Although Theorem 3.43 in [11] is stated for C1 −domains, it clearly holds for Lipschitz domains, since the trace operator is also defined. Apart from that, the proof goes ipsis-literis.

References

  1. Axler, S., Bourdon, P., Ramey, W.: Harmonic function theory. Second edition. Graduate Texts in Mathematics, vol. 137, pp. xii+ 259. Springer, New York. ISBN: 0-387-95218-7 (2001)

  2. Adams, R., Fournier, J.: Sobolev Spaces, 2nd edn. Academic Press (2003)

  3. Aikawa, H., Kilpeläinen, T., Shanmugalingam, N., Zhong, X.: Boundary Harnack principle for p-harmonic functions in smooth Euclidean domains. Potential Anal. 26(3), 281–301 (2007)

    Article  MathSciNet  Google Scholar 

  4. Braga, J.E.M.: A New Proof of the Phragmén-Lindelöf Theorem for Fully Nonlinear Equations. Milan J. Math. 85, 247–256 (2017)

    Article  MathSciNet  Google Scholar 

  5. Braga, J.E.M., Moreira, D.R.: Uniform Lipschitz regularity for classes of minimizers in two phase free boundary problems in Orlicz spaces with small density on the negative phase. Ann. Inst. H. Poincaré Anal. Non Linéaire 31(4), 823–850 (2014)

    Article  MathSciNet  Google Scholar 

  6. Braga, J.E.M., Moreira, D.: Inhomogeneous Hopf-oleı̆nik lemma and regularity of semiconvex supersolutions via new barriers for the Pucci extremal operators. Adv. Math. 334, 184–242 (2018)

    Article  MathSciNet  Google Scholar 

  7. Brezis, H.: Functional analysis, Sobolev spaces and partial differential equations, pp. xiv+ 599. Universitext. Springer, New York. ISBN: 978-0-387-70913-0 (2011)

  8. Caffarelli, L., Fabes, E., Mortola. S., Salsa, S.: Boundary behavior of nonnegative solutions of elliptic operators in divergence form, vol. 30 (1981)

  9. Caffarelli, L., Salsa, S.: A Geometric Approach to Free Boundary Problems Graduate Studies in Mathematics, vol. 68. Amer. Math. Soc., Providence (2005)

    MATH  Google Scholar 

  10. Gilbarg, D.: The Pragmém-Lindelöf theorem for elliptic partial differential equations. J. Rational Mech. Anal. 1, 411–417 (1952)

    MathSciNet  MATH  Google Scholar 

  11. Demengel, F., Demengel, G.: Functional spaces for the theory of elliptic partial differential equations. Translated from the 2007 French original by Reinie Erné. Universitext, pp. xviii+ 465. Springer, London; EDP Sciences, Les Ulis. ISBN: 978-1-4471-2806-9; 978-2-7598-0698-0 (2012)

  12. Helms, L.L: Potential theory. Second edition. Universitext, pp. xiv+ 485. Springer, London. ISBN: 978-1-4471-6421-0; 978-1-4471-6422-7 (2014)

  13. Hopf, E.: Remarks on the proceding paper by D. Gilbarg. J. Rational Mech. Anal. 1, 418–424 (1952)

    Google Scholar 

  14. Huber, A.: A theorem of Phragmén-Lindelöf type. Proc. Amer. Math. Soc. 4, 852–857 (1953)

    MathSciNet  MATH  Google Scholar 

  15. Kilpeläinen, T., Shahgholian, H., Zhong, X.: Growth estimates through scaling for quasilinear partial differential equations. Ann. Acad. Sci. Fenn. Math. 32, 595–599 (2007)

    MathSciNet  MATH  Google Scholar 

  16. Lieberman, G.M.: The natural generalization of the natural conditions of Ladyzhensaya and Uraltseva for elliptic equations. Comm. Partial Differ. Equ. 16(2 & 3), 311–361 (1991)

    Article  Google Scholar 

  17. Loomis, L.H., Widder, D.V.: The Poisson integral representation of functions which are positive and harmonic in a half-plane. Duke Math. J. 9, 643–645 (1942)

    Article  MathSciNet  Google Scholar 

  18. Martio, O.: Reflection principle for solutions of elliptic partial differential equations and quasiregular mappings. Ann. Acad. Sci. Fenn. Ser. A I Math. 6 1, 179–187 (1981)

    Article  MathSciNet  Google Scholar 

  19. Martinez, S., Wolanski, N.: A minimum problem with free boundary in Orlicz Spaces. Adv. Math. 218(6), 1914–1971 (2008)

    Article  MathSciNet  Google Scholar 

  20. Rudin, W.: Tauberian theorems for positive harmonic functions. Nederl. Akad. Wetensch. Indag Math. 40(3), 376–384 (1978)

    Article  MathSciNet  Google Scholar 

  21. Serrin, J.B.: On Pragmém-Lindelöf Principle for elliptic partial differential equations. J. Rational Mech. Anal. 3, 395–413 (1954)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the referee for nice remarks and suggestions on the paper. The research of the second author was partially funded by CNPq-Brazil and PRONEX-FUNCAP(Brazil).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Moreira.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Additional Properties of Functions in Sobolev Spaces W 1,G

Appendix: Additional Properties of Functions in Sobolev Spaces W 1,G

Proposition 8.1 (Gluing Sobolev Functions)

Let \(u\in W^{1,G}(B_{R}^{+})\cap C^{0}(\overline {B}_{R}^{+})\) and \(v\in W^{1,G}(B_{R}^{-})\cap C^{0}(\overline {B}_{R}^{-})\) be such that uv on \(\{x_{n}=0\}\cap \overline {B}_{R}\). Let us define

$$ w(x) = \left\{\begin{array}{ll} u(x) & \textrm{ if } \ x\in \overline{B}_{R}^{+}; \\ \\ v(x) & \textrm{ if } \ x\in \overline{B}_{R}^{-}. \end{array}\right.\\ $$
(A.27)

Then, \(w\in W^{1,G}(B_{R})\cap C^{0}(\overline {B}_{R}).\)

Proof

Clearly, \(w\in C^{0}(\overline {B}_{R}).\) We observe that by setting

$$ X(x) = \left\{\begin{array}{ll} \nabla u(x) & \textrm{ if } \ x\in {B}_{R}^{+}; \\ \\ \nabla v(x) & \textrm{ if } \ x\in {B}_{R}^{-}, \end{array}\right. $$
(A.28)

it is immediate that \(X\in L^{G}(B_{R};\mathbb {R}^{n})\) and wLG(BR).Footnote 1 We claim that X is the weak gradient of w in BR. In order to show this, we need to prove that for any \({\Phi }\in C_{0}^{\infty }(B_{R}; \mathbb {R}^{n})\) a smooth vector field compactly supported in BR, we have

$$ {\int}_{B_{R}} \langle{\Phi}(x), X(x) \rangle dx = - {\int}_{B_{R}}w(x)div({\Phi}(x))dx $$
(A.29)

In the case \(supp({\Phi })\subset \subset B_{R}^{+}\) or \(supp({\Phi })\subset \subset B_{R}^{-}\) it is clear that Eq. A.29 holds. We need to prove that Eq. A.29 holds when \({\Phi }\in C_{0}^{\infty }(B_{R}; \mathbb {R}^{n})\) such that supp(Φ) ∩{xn = 0}≠. Let 0 < s < R so that supp(Φ) ⊂⊂ Bs. Since \(u\in W^{1,G}(B_{s}^{+}), v\in W^{1,G}(B_{s}^{-})\) and \(W^{1,G}(B_{s}^{\pm })\hookrightarrow W^{1, 1+\delta }(B_{s}^{\pm })\) by Theorem 2.2 in [19] we have by Green’s formula, Theorem 3.43Footnote 2 in [11], that

$$ {\int}_{B_{s}^{+}}\langle\nabla u, {\Phi} \rangle dx + {\int}_{B_{s}^{+}}u(x)div({\Phi}(x))dx = -{\int}_{\{x_{n}=0\}\cap\partial B_{s}^{+}} \langle u(y){\Phi}(y), e_{n}\rangle d\mathcal{H}^{n-1}(y),$$
$$ {\int}_{B_{s}^{-}}\langle\nabla v, {\Phi} \rangle dx + {\int}_{B_{s}^{-}}v(x)div({\Phi}(x))dx = {\int}_{\{x_{n}=0\}\cap\partial B_{s}^{+}} \langle v(y){\Phi}(y), e_{n}\rangle d\mathcal{H}^{n-1}(y).$$

Adding the two identities above and recalling that uv along \(\{x_{n}=0\}\cap \overline {B}_{R}\) we obtain (A.29). □

Applying the Proposition above to u and its odd reflection across {xn = 0} we immediately obtain

Corollary 8.1

Let \(u\in W^{1,G}(B_{R}^{+})\cap C_{vfb}^{0}(\overline {B}_{R}^{+})\) and set

$$ u^{*}(x) = \left\{\begin{array}{ll} u(x) & \textrm{ if } \ x\in \overline{B}_{R}^{+}; \\ \\ -u(R_{n}(x)) & \textrm{ if } \ x\in \overline{B}_{R}^{-}, \end{array}\right.\\ $$
(A.30)

where \(R_{n}:\mathbb {R}^{n}\to \mathbb {R}^{n}\) is the reflection across {xn = 0} given by Rn(x1,⋯ ,xn) = (x1,⋯ ,−xn).

Then, \(u^{*}\in W^{1,G}(B_{R})\cap C^{0}(\overline {B}_{R}).\)

Next result is inspired in Lemma 8.1 of [19]. This is a delicate result, that shows the (full) integrability of the gradient up to the flat boundary for nonnegative functions in \(W_{loc}^{1,G}\) that continuously vanishes on the flat boundary comes from the property of being a subsolution.

Proposition 8.2 (Integrability of the gradient up to the flat boundary)

Let \(u\in C_{vfb}^{0}(\overline {B}_{R}^{+}) \cap W^{1,G}_{loc}(B_{R}^{+})\) such that Δgu ≥ 0 in \(B_{R}^{+}.\) Then, for any 0 < r < R we have that \(u^{+}\in W^{1,G}(B_{r}^{+}).\) In particular, if we set \({u}_{e}^{+}\) to be the extension of u+ by zero in \(\overline {B}_{R}\setminus B_{R}^{+}\), then, \({u}_{e}^{+}\in W_{loc}^{1,G}(B_{R})\cap C^{0}(\overline {B}_{R})\).

Proof

It is easy to see that \(u^{+}\in W_{loc}^{1,G}(B_{R}^{+})\). For the first assertion, we only need to prove that \(\nabla u\in L^{G}(B_{r}^{+}).\) Let 0 < r < s < R and uϱ := (uϱ)+ for ϱ > 0 and \(\varphi \in C_{0}^{\infty }(B_{s})\) with φ ≡ 1 in \(\overline {B}_{r}^{+}\) with 0 ≤ φ ≤ 1. We have \(u_{\varrho }\in W_{loc}^{1,G}(B_{R}^{+})\) and we also observe that \(\varphi ^{1 + g_{0}}u_{\varrho }\in W_{0}^{1,G}(B_{R}^{+})\) and it has compact support in \(B_{s}^{+}\). Hence,

$$ \begin{array}{@{}rcl@{}} 0 & \geq & {\int}_{B_{R}^{+}} H_{g}({\vert \nabla u \vert}) \nabla u \nabla (\varphi^{1 + g_{0}}u_{\varrho}) dx \\ \\ & = & {\int}_{B_{R}^{+} \cap \{ u > \varrho \}} \varphi^{1 + g_{0}} g(\vert \nabla u \vert) \vert \nabla u \vert dx + (1 + g_{0}) {\int}_{B_{R}^{+} \cap \{ u > \varrho \}} \varphi^{g_{0}} u_{\varrho} H_{g}({\vert \nabla {u} \vert}) \nabla {u} \nabla \varphi dx.\\ \end{array} $$
(A.31)
$$ \begin{array}{@{}rcl@{}} {\int}_{B_{R}^{+} \cap \{ u > \varrho \}} \varphi^{1 + g_{0}} G(\vert \nabla u \vert) dx & \leq & {\int}_{B_{R}^{+} \cap \{ u > \varrho \}} \varphi^{1 + g_{0}} g(\vert \nabla u \vert) \vert \nabla u \vert dx \quad (\text {by} \ G_{4})\\ & \leq & (1 + g_{0}) {\int}_{B_{R}^{+} \cap \{ u > \varrho \}} \varphi^{g_{0}} u_{\varrho} g(\vert \nabla {u} \vert) \vert \nabla \varphi \vert dx \quad \text {(by (A.31))} \end{array} $$

Now, by generalized Young inequality G5), we have

$$ \begin{array}{@{}rcl@{}} \varphi^{g_{0}} u_{\varrho} g(\vert \nabla {u} \vert) \vert \nabla \varphi \vert &\leq& \varepsilon \widetilde{G}(\varphi^{g_{0}}g(\vert \nabla {u} \vert)) + C(\varepsilon){G}(u_{\varrho}|\nabla \varphi|)\\ & \leq & C(\delta)\varepsilon \varphi^{1+g_{0}}\widetilde{G}(g(|\nabla u|) + C(\varepsilon){G}(u_{\varrho}|\nabla \varphi|) \quad (\text {by } G_{2}) \text { and since }\\ && 0\leq \varphi \leq 1)\\ & \leq & C(\delta) g_{0}\varepsilon \varphi^{1+g_{0}}G(|\nabla u|) + C(\varepsilon){G}(u_{\varrho}|\nabla \varphi|) \end{array} $$

Now, choosing ε > 0 small enough (depending only on δ,g0) and using Eq. A.31, we arrive for a different constant C = C(ε) > 0

$$ \begin{array}{@{}rcl@{}} {\int}_{B_{R}^{+} \cap \{ u > \varrho \}} \varphi^{1 + g_{0}} G(\vert \nabla u \vert) dx & \leq & C(\varepsilon) {\int}_{B_{R}^{+} \cap \{ u > \varrho \}} {G}(u_{\varrho}|\nabla \varphi|) dx \\ & \leq & C(\varepsilon) {\int}_{B_{R}^{+} \cap \{ u > \varrho \}\cap (supp(\varphi))} {G}(|u| |\nabla \varphi|)dx \\ & \leq & C(\varepsilon) {\int}_{B_{R}^{+} \cap \{ u > \varrho \}\cap (supp(\varphi))} {G}\Big(||u||_{L^{\infty}(B_{R}^{+})} \!\cdot \!||\nabla \varphi||_{L^{\infty}(B_{R}^{+})}\Big)dx\\ && \quad (\text {by $G_{1}$}) \\ & \leq & C(\varepsilon)(1+g_{0})\Big(||u||_{L^{\infty}(B_{R}^{+})}+1\Big)^{1+g_{0}} \\ &&\Big(||\nabla \varphi||_{L^{\infty}(B_{R}^{+})}+1\Big)^{1+g_{0}} G(1)\cdot |supp(\varphi)| < \infty \end{array} $$

Now, since G(0) = 0, by letting ϱ → 0+ we conclude that

$$ \begin{array}{@{}rcl@{}} {\int}_{B_{r}^{+}} G(\vert \nabla u^{+} \vert) dx &=& {\int}_{B_{r}^{+}} G(\vert \nabla u \chi_{\{ u > 0 \}} \vert) dx \\ & = & {\int}_{B_{r}^{+}} G(\vert \nabla u \vert\chi_{\{ u > 0 \}}) dx \\ & = & {\int}_{B_{r}^{+}} G(\vert \nabla u \vert)\chi_{\{ u > 0 \}} dx \\ &= & {\int}_{B_{r}^{+} \cap \{ u > 0 \}} G(\vert \nabla u \vert) dx \\ & = & \lim\limits_{\rho\to 0^{+}} {\int}_{B_{r}^{+} \cap \{ u > \varrho \}} G(\vert \nabla u \vert) dx\\ & \leq & \lim\limits_{\rho\to 0^{+}} {\int}_{B_{R}^{+} \cap \{ u > \varrho \}} \varphi^{1 + g_{0}} G(\vert \nabla u \vert) dx \quad (\text {once}\ \varphi \equiv 1 \ \text { in } B_{r}^{+}) \\ & \leq & C(\varepsilon)\Big(||u||_{L^{\infty}(B_{R}^{+})}+1\Big)^{1+g_{0}} \Big(||\nabla \varphi||_{L^{\infty}(B_{R}^{+})}+1\Big)^{1+g_{0}} G(1)\\ &&\cdot |supp(\varphi)| <\infty \quad(\text {by $G_{1}$}), \end{array} $$

and this finishes the proof of the first part. For the claims about \(u_{e}^{+}\), we observe that clearly \(u_{e}^{+}\in C^{0}(\overline {B}_{R}).\) The fact that \(u_{e}^{+}\in W_{loc}^{1,G}(B_{R})\) follows from Proposition 8.1. □

We can now obtain an improvement of Corollary 8.1 by dismissing the full integrability of the gradient up to the flat boundary.

Corollary 8.2 (Sobolev regularity of the odd-reflection)

Let \(u\in W_{loc}^{1,G}(B_{R}^{+})\cap C_{vfb}^{0}(\overline {B}_{R}^{+})\) such that Δgu = 0 in \(\mathbb {R}_{+}^{n}\) and set

$$ u^{*}(x) = \left\{\begin{array}{ll} u(x) & \textrm{ if } \ x\in \overline{B}_{R}^{+}; \\ \\ -u(R_{n}(x)) & \textrm{ if } \ x\in \overline{B}_{R}^{-}, \end{array}\right.\\ $$
(A.32)

where \(R_{n}:\mathbb {R}^{n}\to \mathbb {R}^{n}\) is the reflection across {xn = 0} given by Rn(x1,⋯ ,xn) = (x1,⋯ ,−xn). Then, \(u^{*}\in W_{loc}^{1,G}(B_{R})\cap C^{0}(\overline {B}_{R}).\)

Proof

Indeed, since \(\pm u\in W_{loc}^{1,G}(B_{R}^{+})\cap C_{vfb}^{0}(\overline {B}_{R}^{+})\) and Δgu = Δg(−u) ≥ 0 in \(B_{R}^{+}\), Proposition 8.2 gives that u+ and (−u)+ = u are both in \(W^{1,G}(B_{r}^{+})\) for any 0 < r < R. In particular, \(u=u^{+}-u^{-}\in W^{1,G}(B_{r}^{+})\) for any 0 < r < R. The result now follows from Proposition 8.1. □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Braga, J.E.M., Moreira, D. Classification of Nonnegative g −Harmonic Functions in Half-Spaces. Potential Anal 55, 369–387 (2021). https://doi.org/10.1007/s11118-020-09860-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-020-09860-6

Keywords

Mathematics Subject Classification (2010)

Navigation