Skip to main content
Log in

Large Deviations for Stochastic Nematic Liquid Crystals Driven by Multiplicative Gaussian Noise

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

We study a stochastic two-dimensional nematic liquid crystal model with multiplicative Gaussian noise. We prove the Wentzell-Freidlin type large deviations principle for the small noise asymptotic of solutions using weak convergence method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Adams, R.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  2. Brzeźniak, Z., Goldys, B., Jegaraj, T.: Large deviations and transitions between equilibria for stochastic Landau-Lifshitz-Gilbert equation. Arch. Ration. Mech. Anal. 226(2), 497–558 (2017)

    Article  MathSciNet  Google Scholar 

  3. Brzeźniak, Z., Hausenblas, E., Razafimandimby, P.: Stochastic nonparabolic dissipative systems modelling the flow of liquid crystals: strong solution. RIMS Kokyuroku Proceeding of RIMS Symposium on Mathematical Analysis of Incompressible Flow, pp. 41–72 (2014)

  4. Brzeźniak, Z., Hausenblas, E., Razafimandimby, P.: Some results on the penalised nematic liquid crystals driven by multiplicative noise. arXiv:1310.8641[math.PR] (2013)

  5. Brzeźniak, Z., Hausenblas, E., Razafimandimby, P.: Some results on the penalised nematic liquid crystals driven by multiplicative noise: weak solution and maximum principle. to appear in Stoch PDE: Anal Comp. https://doi.org/10.1007/s40072-018-0131-z (2019)

  6. Brzeźniak, Z., Hausenblas, E., Razafimandimby, P.: On strong solution to the penalised nematic liquid crystals driven by multiplicative noise. In preparation

  7. Brzeźniak, Z., Hausenblas, E., Razafimandimby, P.: A note on the Stochastic Ericksen-Leslie equations for nematic liquid crystals. Preprint. to appear in Discrete Contin. Dyn. Syst. Ser. B

  8. Brzeźniak, Z., Degoue, G., Razafimandimby, P.: Ginzburg-Landau approximation of the stochastic Erickssen-Leslie Equations. In preparation

  9. Brzeźniak, Z., Manna, U., Panda, A.A.: Martingale solutions of nematic liquid crystals driven by pure jump noise in the marcus canonical form. J. Differential Equations 266(10), 6204–6283 (2019)

    Article  MathSciNet  Google Scholar 

  10. Brzeźniak, Z., Motyl, E.: Existence of martingale solutions of the stochastic Navier-Stokes equations in unbounded 2D and 3D-domains. J. Differential Equations 254, 1627–1685 (2013)

    Article  MathSciNet  Google Scholar 

  11. Budhiraja, A., Dupuis, P.: A variational representation for positive functionals of infinite dimensional Brownian motion. Ann. Inst. Henri Poincaré Probab. Math. Stat. 20, 39–61 (2000)

    MathSciNet  MATH  Google Scholar 

  12. Chueshov, I., Millet, A.: Stochastic 2D hydrodynamical type systems: well posedness and large deviations. Appl. Math. Optim. 61, 379–420 (2010)

    Article  MathSciNet  Google Scholar 

  13. Da Prato, G., Flandoli, F., Priola, E., Röckner, M.: Strong uniqueness for stochastic evolution equations in Hilbert spaces perturbed by a bounded measurable drift. Ann. Probab. 41(5), 3306–3344 (2013)

    Article  MathSciNet  Google Scholar 

  14. Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Encyclopedia of Mathematics and its Applications 44. Cambridge University Press, Cambridge (1992)

    Book  Google Scholar 

  15. Dudley, R.M.: Real Analysis and Probability. Wadsworth & Brooks/Cole, Pacific Grove (1989)

    MATH  Google Scholar 

  16. Ericksen, J.L.: Conservation laws for liquid crystals. Trans. Soc. Rheology 5, 23–34 (1961)

    Article  MathSciNet  Google Scholar 

  17. Flandoli, F., Gatarek, D.: Martingale and stationary solutions for stochastic Navier–Stokes equations. Probab. Theory Related Fields 102, 367–391 (1995)

    Article  MathSciNet  Google Scholar 

  18. Kallenberg, O.: Foundations of modern probability, 2nd edn. Springer, Berlin (2004)

    Google Scholar 

  19. Leslie, F.M.: Some constitutive equations for liquid crystals. Arch. Rational Mech. Anal. 28(04), 265–283 (1968)

    Article  MathSciNet  Google Scholar 

  20. Lin, F.-H., Liu, C.: Nonparabolic dissipative systems modelling the flow of liquid crystals. Commun. Pure Appl. Math. XLVIII, 501–537 (1995)

    Article  Google Scholar 

  21. Lions, J.-L.: Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires. Dunod, Paris (1969)

    MATH  Google Scholar 

  22. Manna, U., Sritharan, S.S., Sundar, P.: Large deviations for the stochastic shell model of turbulence. NoDEA Nonlinear Differential Equations Appl. 16, 493–521 (2009)

    Article  MathSciNet  Google Scholar 

  23. Ondreját, M.: Uniqueness for stochastic evolution equations in Banach spaces. Diss. Math. 426, 1–63 (2004)

    MathSciNet  MATH  Google Scholar 

  24. Sritharan, S.S., Sundar, P.: Large deviations for the two-dimensional Navier-Stokes equations with multiplicative noise. Stoch. Process. Appl. 116, 1636–1659 (2006)

    Article  MathSciNet  Google Scholar 

  25. Temam, R.: Navier-Stokes Equations, Theory and Numerical Analysis. North Holland Publishing Company, Amsterdam (1979)

    MATH  Google Scholar 

  26. Zhai, J., Zhang, T.: Large deviations for 2-D stochastic Navier-Stokes equations driven by multiplicative Lévy noises. Bernoulli 21(4), 2351–2392 (2015)

    Article  MathSciNet  Google Scholar 

  27. Zhang, R., Zhou, G.: Large deviations for nematic liquid crystals driven by pure jump noise. Math. Meth. Appl. Sci. 41, 5552–5581 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Paul Razafimandimby for useful discussions. The first author would like to acknowledge the support of the Royal Society grant “Stochastic Landau-Lifshitz-Gilbert equation with Lévy noise and ferromagnetism”, Grant No: IE140328. The second author would like to acknowledge the support from the Science and Engineering Research Board, Govt. of India, Grant No. MTR/2018/00034.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Utpal Manna.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Proof of Theorem 5.5

Appendix: Proof of Theorem 5.5

This theorem speaks about the existence and uniqueness of the skeleton Eqs. 5.8–5.9. We will use the classical Faedo-Galerkin approximation to prove the existence results.

1.1 A.1. Faedo-Galerkin Approximation

Our proof of existence of the skeleton equation depends on the Galerkin approximation method. Let \(\{ \rho _{i}\}_{i = 1}^{\infty }\) be the orthonormal basis of H composed of eigenfunctions of the stokes operator \(\mathscr{A}\). Let \(\{ \sigma _{i}\}_{i = 1}^{\infty }\) be the orthonormal basis of L2 consisting of the eigenfunctions of the Neumann Laplacian \(\mathcal {A}\). Let us define the following finite dimensional spaces for any \(n \in \mathbb {N}\)

$$ \begin{array}{@{}rcl@{}} \mathrm{H}_{n} &:=& Linspan\{ \rho_{1}, \dots, \rho_{n}\},\\ \mathbb{L}_{n} &:=& Linspan\{ \sigma_{1}, \dots, \sigma_{n}\}. \end{array} $$

Our aim is to derive uniform estimates for the solution of the projection of Eqs. 5.8–5.9 onto the finite dimensional space \(\mathrm {H}_{n} \times \mathbb {L}_{n}\), i.e., its Galerkin approximation. For this let us denote by Pn the projection from H onto Hn and \(\tilde {P}_{n}\) be the projection from L2 onto \(\mathbb {L}_{n}\). We consider the following locally Lipschitz mappings:

$$ \begin{array}{@{}rcl@{}} &&B_{n} : \mathrm{H}_{n} \ni \mathbf{u} \mapsto P_{n} B(\mathbf{u}, \mathbf{u}) \in \mathrm{H}_{n},\\ &&M_{n} : \mathbb{L}_{n} \ni \mathbf{d} \mapsto P_{n} M(\mathbf{d}) \in \mathrm{H}_{n},\\ &&f_{n} : \mathbb{L}_{n} \ni \mathbf{d} \mapsto \tilde{P}_{n} f(\mathbf{d}) \in \mathbb{L}_{n},\\ &&\tilde{B}_{n} : \mathrm{H}_{n} \times \mathbb{L}_{n} \ni (\mathbf{u}, \mathbf{d}) \mapsto \tilde{P}_{n} \tilde{B}(\mathbf{u}, \mathbf{d}) \in \mathbb{L}_{n}. \end{array} $$

Let Pnu0 = un(0) := u0n and \(\tilde {P}_{n} \mathbf {d}_{0} = \mathbf {d}_{n}(0) := \mathbf {d}_{0n}\).

So the Galerkin approximation of the problem is:

$$ \begin{array}{@{}rcl@{}} d\mathbf{u}_{n}(t) + \left[ \mathscr{A}\mathbf{u}_{n}(t) + B_{n}(\mathbf{u}_{n}(t)) + M_{n}(\mathbf{d}_{n}(t)) \right] dt = P_{n} \sigma(\mathbf{u}_{n}(t)) \theta(t) dt, \end{array} $$
(A.1)
$$ \begin{array}{@{}rcl@{}} d\mathbf{d}_{n}(t) + \left[ \mathcal{A} \mathbf{d}_{n}(t) + \tilde{B}_{n}(\mathbf{u}_{n}(t), \mathbf{d}_{n}(t)) + f_{n}(\mathbf{d}_{n}(t)) \right] dt = \tilde{P}_{n} G(\mathbf{d}_{n}(t)) \rho(t) dt. \end{array} $$
(A.2)

Lemma A.1

For each \(n \in \mathbb {N},\)the problem (A.1)-(A.2) has a unique global solution.

Proof

We have the existence result due to [20]. □

The processes \(\left (\mathbf {u}_{n}\right )_{n \in \mathbb {N}}\) and \(\left (\mathbf {d}_{n}\right )_{n \in \mathbb {N}}\) satisfy the following estimates.

Proposition A.2

For any p ≥ 2, there exists a positive constant \(\tilde {C} = \tilde {C}_{p}\), independent of ρ such that

$$ \begin{array}{@{}rcl@{}} \sup_{n \in \mathbb{N}} \left[ \sup_{s \in [0,T]} \left| \mathbf{d}_{n}(s) \right|_{L^{2}}^{p} + {{\int}_{0}^{T}} \left| \mathbf{d}_{n}(s) \right|_{L^{2}}^{p-2} \left( | \nabla \mathbf{d}_{n}(s)|_{L^{2}}^{2} + |\mathbf{d}_{n}(s)|^{2N+2}_{L^{2N+2}}\right) ds \right] \leq \tilde{C}, \end{array} $$

where \(\tilde {C} := |\mathbf {d}_{0}|_{L^{2}}^{p} \left (1+CTe^{CT}\right )\) .

Proof

The proof is similar to the proof in [4]. In our case we will be using the fact that 〈G(dn(s)), dn(s)〉 = 0. Then the other steps of the proof will follow as in [4] (see also [20]). □

Proposition A.3

There exists a positive constant \(\bar {C}\) depending on \(K, T, \mathbf {h}, |\rho |_{L^{2}(0, T; \mathbb {R})},\) \( |\theta |_{L^{2}(0, T; \mathrm {H}_{0})}\) such that

$$ \begin{array}{@{}rcl@{}} \sup_{n \geq 1} \left[ \sup_{s \in [0, T]} \left| \mathbf{u}_{n}(s) \right|_{\mathrm{H}}^{2} + {\Psi}(\mathbf{d}_{n}(s)) + {{\int}_{0}^{T}} \left( \big\|\mathbf{u}_{n}(s) \big\| + \frac{1}{2} \left| f_{n}(\mathbf{d}_{n}(s)) + \mathcal{A} \mathbf{d}_{n}(s) \right|_{L^{2}}^{2} \right) ds \right] \leq \bar{C}, \end{array} $$

where \({\Psi }(z) := \frac {1}{2} |\nabla z|^{2} + \frac {1}{2} {\int }_{\mathcal {O}} \tilde {\mathrm {F}}(|z|^{2}) dx\)and K is the linear growth coefficient for σ.

Proof

Consider the approximated system (A.1)-(A.2). Now take the inner product of (A.1) with un and writing in integral form we obtain,

$$ \begin{array}{@{}rcl@{}} &&\left| \mathbf{u}_{n}(t) \right|^{2}_{\mathrm{H}} - \left| \mathbf{u}_{0n} \right|^{2}_{\mathrm{H}} \\ &&= - {{\int}_{0}^{t}} \left\langle \mathscr{A}\mathbf{u}_{n}(s) + B_{n}(\mathbf{u}_{n}(s)) + M_{n}(\mathbf{d}_{n}(s)), \mathbf{u}_{n}(s) \right\rangle ds + {{\int}_{0}^{t}} \left\langle P_{n} \sigma(\mathbf{u}_{n}(s)) \theta(s), \mathbf{u}_{n}(s) \right\rangle ds \\ &&= - {{\int}_{0}^{t}} | \nabla \mathbf{u}_{n}(s) |^{2} ds - {{\int}_{0}^{t}} \left\langle M_{n}(\mathbf{d}_{n}(s)), \mathbf{u}_{n}(s) \right\rangle ds + {{\int}_{0}^{t}} \left\langle P_{n} \sigma(\mathbf{u}_{n}(s)) \theta(s), \mathbf{u}_{n}(s) \right\rangle ds\\ \end{array} $$
(A.3)

Now consider the map

$$ {\Psi}(z) := \frac{1}{2} |\nabla z|^{2} + \frac{1}{2} {\int}_{\mathcal{O}} \tilde{\mathrm{F}}(|z|^{2}) dx. $$

The first Fréchet derivative is: \({\Psi }^{\prime }(z)[g] = \langle \nabla z, \nabla g \rangle + \langle f(z), g\rangle = \langle \mathcal {A} z+ f(z), g\rangle \).

From (A.2) we get,

$$ \begin{array}{@{}rcl@{}} &&{\Psi}(\mathbf{d}_{n}(t)) - {\Psi}(\mathbf{d}_{n}(0))\\ &&= - {{\int}_{0}^{t}} {\Psi}^{\prime}(\mathbf{d}_{n}(s)) \left[ \mathcal{A} \mathbf{d}_{n}(s) + \tilde{B}_{n}(\mathbf{u}_{n}(s), \mathbf{d}_{n}(s)) + f_{n}(\mathbf{d}_{n}(s)) \right] ds\\ &&\quad+ {{\int}_{0}^{t}} {\Psi}^{\prime}(\mathbf{d}_{n}(s)) \left[ \tilde{P}_{n} G(\mathbf{d}_{n}(s)) \rho(s) \right] ds\\ &&= {{\int}_{0}^{t}} - |f_{n}(\mathbf{d}_{n}(s)) + \mathcal{A} \mathbf{d}_{n}(s)|^{2} ds - \left\langle \tilde{B}_{n}(\mathbf{u}_{n}(s), \mathbf{d}_{n}(s)), f_{n}(\mathbf{d}_{n}(s)) + \mathcal{A} \mathbf{d}_{n}(s) \right\rangle ds\\ &&\quad \ + {{\int}_{0}^{t}} \left\langle \tilde{P}_{n} G(\mathbf{d}_{n}(s)) \rho(s), f_{n}(\mathbf{d}_{n}(s)) + \mathcal{A} \mathbf{d}_{n}(s) \right\rangle ds. \end{array} $$
(A.4)

From the proof of Proposition 5.5 in [9] we have,

$$ \begin{array}{@{}rcl@{}} &&\left\langle \tilde{B}_{n}(\mathbf{u}_{n}(s), \mathbf{d}_{n}(s)), f_{n}(\mathbf{d}_{n}(s)) \right\rangle = 0,\\ &&\text{and}\\ &&\left\langle \tilde{B}_{n}(\mathbf{u}_{n}(s), \mathbf{d}_{n}(s)), \mathcal{A} \mathbf{d}_{n}(s) \right\rangle = \left\langle M_{n}(\mathbf{d}_{n}(s)), \mathbf{u}_{n}(s) \right\rangle. \end{array} $$

Now adding (A.3) and (A.4) and rearranging we obtain,

$$ \begin{array}{@{}rcl@{}} &&| \mathbf{u}_{n}(t)|^{2} + {\Psi}(\mathbf{d}_{n}(t)) + {{\int}_{0}^{t}} \left( | \nabla \mathbf{u}_{n}(s) |^{2} + |f_{n}(\mathbf{d}_{n}(s)) + \mathcal{A} \mathbf{d}_{n}(s)|^{2} \right) ds\\ &&= | \mathbf{u}_{0n}|^{2} + {\Psi}(\mathbf{d}_{0n}) + {{\int}_{0}^{t}} \left\langle P_{n} \sigma(\mathbf{u}_{n}(s)) \theta(s), \mathbf{u}_{n}(s) \right\rangle ds\\ &&\quad+ {{\int}_{0}^{t}} \left\langle \tilde{P}_{n} G(\mathbf{d}_{n}(s)) \rho(s), f_{n}(\mathbf{d}_{n}(s)) + \mathcal{A} \mathbf{d}_{n}(s) \right\rangle ds \end{array} $$
(A.5)

We will estimate the term \({{\int }_{0}^{t}} \left | \left \langle P_{n} \sigma (\mathbf {u}_{n}(s)) \theta (s), \mathbf {u}_{n}(s) \right \rangle \right | ds\). Using the linear growth property of σ (with growth constant K), the Cauchy-Schwarz inequality, the embedding of H0↪H and the fact that \(a \leq \sqrt {1+a^{2}} \leq 1+a^{2},\) for a > 0 we infer,

$$ \begin{array}{@{}rcl@{}} &&{{\int}_{0}^{t}} \left| \left\langle P_{n} \sigma(\mathbf{u}_{n}(s)) \theta(s), \mathbf{u}_{n}(s) \right\rangle \right| ds \leq {{\int}_{0}^{t}} |\sigma(\mathbf{u}_{n}(s))|_{\mathrm{L}_{2}} |\theta(s)|_{\mathrm{H}} |\mathbf{u}_{n}(s)|_{\mathrm{H}} ds\\ &&\leq \sqrt{K} {{\int}_{0}^{t}} \sqrt{1+ \left| \mathbf{u}_{n}(s) \right|^{2}_{\mathrm{H}}} \ |\theta(s)|_{\mathrm{H}} |\mathbf{u}_{n}(s)|_{\mathrm{H}} ds \leq \sqrt{K} {{\int}_{0}^{t}} \left( 1+ |\mathbf{u}_{n}(s)|_{\mathrm{H}}^{2} \right) |\theta(s)|_{\mathrm{H}_{0}}\\ &&\leq \sqrt{K} {{\int}_{0}^{t}} \left( 1+|\mathbf{u}_{n}(s)|_{\mathrm{H}}^{2} \right) \left( 1+ |\theta(s)|^{2}_{\mathrm{H}_{0}}\right) ds\\ &&= {{\int}_{0}^{t}} \sqrt{K} ds + \sqrt{K} {{\int}_{0}^{t}} |\theta(s)|^{2}_{\mathrm{H}_{0}} ds + \sqrt{K} {{\int}_{0}^{t}} |\mathbf{u}_{n}(s)|_{\mathrm{H}}^{2} \left( 1+ |\theta(s)|^{2}_{\mathrm{H}_{0}}\right) ds. \end{array} $$
(A.6)

Similar procedure will give,

$$ \begin{array}{@{}rcl@{}} &&{{\int}_{0}^{t}} \left| \left\langle \tilde{P}_{n} G(\mathbf{d}_{n}(s)) \rho(s), f_{n}(\mathbf{d}_{n}(s)) + \mathcal{A} \mathbf{d}_{n}(s) \right\rangle \right| ds\\ &&\leq {{\int}_{0}^{t}} |G(\mathbf{d}_{n}(s))|_{L^{2}} |\rho(s)|_{\mathbb{R}} |f_{n}(\mathbf{d}_{n}(s)) + \mathcal{A} \mathbf{d}_{n}(s)|_{L^{2}} ds\\ &&\leq \frac{C(\mathbf{h})}{2} {{\int}_{0}^{t}} |\mathbf{d}_{n}(s)|^{2}_{L^{2}} |\rho(s)|^{2}_{\mathbb{R}} ds + \frac{1}{2} {{\int}_{0}^{t}} |f_{n}(\mathbf{d}_{n}(s)) + \mathcal{A} \mathbf{d}_{n}(s)|^{2}_{L^{2}} ds. \end{array} $$
(A.7)

Using (A.6) and (A.7) in (A.5) we obtain,

$$ \begin{array}{@{}rcl@{}} &&| \mathbf{u}_{n}(t)|^{2} + {\Psi}(\mathbf{d}_{n}(t)) + {{\int}_{0}^{t}} \left( | \nabla \mathbf{u}_{n}(s) |^{2} + \frac{1}{2} |f_{n}(\mathbf{d}_{n}(s)) + \mathcal{A} \mathbf{d}_{n}(s)|^{2} \right) ds\\ &&\leq | \mathbf{u}_{0n}|^{2} + {\Psi}(\mathbf{d}_{0n}) + \tilde{C}(K, T) + \sqrt{K} {{\int}_{0}^{t}} |\mathbf{u}_{n}(s)|_{\mathrm{H}}^{2} \left( 1+ |\theta(s)|^{2}_{\mathrm{H}_{0}}\right) dss\\ &&\quad+ \frac{C(\mathbf{h})}{2} \sup_{s \in [0, T]} |\mathbf{d}_{n}(s)|^{2}_{L^{2}} {{\int}_{0}^{t}} |\rho(s)|^{2}_{\mathbb{R}} ds. \end{array} $$
(A.8)

Now using Proposition A.2 (for p = 2) in (A.8) we finally get,

$$ \begin{array}{@{}rcl@{}} \left| \mathbf{u}_{n}(t) \right|_{\mathrm{H}}^{2} &\leq& | \mathbf{u}_{0n}|^{2} + {\Psi}(\mathbf{d}_{0n}) + C(K, T) + C(\mathbf{h}, T, |\rho|_{L^{2}(0, T; \mathbb{R})})\\ &&+ \sqrt{K} {{\int}_{0}^{t}} \left|\mathbf{u}_{n}(s) \right|_{\mathrm{H}}^{2} \left( 1+ \left|\theta(s) \right|^{2}_{\mathrm{H}_{0}}\right) ds. \end{array} $$
(A.9)

Using the Gronwall lemma we infer from (A.9),

$$ \begin{array}{@{}rcl@{}} \sup_{s \in [0, T]} | \mathbf{u}_{n}(s)|_{\mathrm{H}}^{2} &\leq& \left[ | \mathbf{u}_{0n}|^{2} + {\Psi}(\mathbf{d}_{0n}) + C(K, \mathbf{h}, |\rho|_{L^{2}(0, T; \mathbb{R})}, T) \right] \\&&\times \exp \left\{ \sqrt{K} \left( 1+|\theta|^{2}_{L^{2}(0, T; \mathrm{H}_{0})} \right) \right\}. \end{array} $$
(A.10)

Since \((\theta , \rho ) \in L^{2}(0, T; \mathrm {H}_{0} \times \mathbb {R}),\) finally using (A.10) we obtain,

$$ \begin{array}{@{}rcl@{}} \sup_{n \geq 1} \left[ \sup_{s \in [0, T]} | \mathbf{u}_{n}(s)|_{\mathrm{H}}^{2} + {\Psi}(\mathbf{d}_{n}(s)) + {{\int}_{0}^{T}} \left( \|\mathbf{u}_{n}(s) \|^{2} + \frac{1}{2} |f_{n}(\mathbf{d}_{n}(s)) + \mathcal{A} \mathbf{d}_{n}(s)|_{L^{2}}^{2} \right) ds \right] \leq \bar{C}, \end{array} $$

where the positive constant

$$\bar{C} := \left[ | \mathbf{u}_{0n}|^{2} + {\Psi}(\mathbf{d}_{0n}) + C(K, \mathbf{h}, |\rho|_{L^{2}(0, T; \mathbb{R})}, T) \right] \exp \left\{C(K, |\theta|_{L^{2}(0, T; \mathrm{H}_{0})}, T) \right\}.$$

Proposition A.4

Let \(\beta \in (0, \frac {1}{2})\). Then there exist positive constants C = Cβ and \(\tilde {C}=\tilde {C}_{\beta }\)such that

$$ \begin{array}{@{}rcl@{}} \sup_{n \geq 1} \left| \mathbf{u}_{n} \right|_{\mathrm{W}^{\beta, 2}([0, T]; \mathrm{V}^{\prime})}^{2} \leq C \qquad \text{and} \qquad \sup_{n \geq 1} \left| \mathbf{d}_{n} \right|_{\mathrm{W}^{\beta, 2}([0, T]; (D(\mathcal{A}))')}^{2} \leq \tilde{C}. \end{array} $$

Proof

We write the approximated system as:

$$ \begin{array}{@{}rcl@{}} \mathbf{u}_{n}(t) &=& \mathbf{u}_{0n} - {{\int}_{0}^{t}} \mathscr{A}\mathbf{u}_{n}(s) ds - {{\int}_{0}^{t}} B_{n}(\mathbf{u}_{n}(s)) ds - {{\int}_{0}^{t}} M_{n}(\mathbf{d}_{n}(s)) ds +{{\int}_{0}^{t}} P_{n} \sigma(\mathbf{u}_{n}(s)) \theta(s) ds, \\ &:=& {I^{1}_{n}} + {I^{2}_{n}}(t) + {I^{3}_{n}}(t) + {I^{4}_{n}}(t) + {I^{5}_{n}}(t). \end{array} $$

and

$$ \begin{array}{@{}rcl@{}} \mathbf{d}_{n}(t) &=& \mathbf{d}_{0n} - {{\int}_{0}^{t}} \mathcal{A} \mathbf{d}_{n}(s) ds - {{\int}_{0}^{t}} \tilde{B}_{n}(\mathbf{u}_{n}(s), \mathbf{d}_{n}(s)) ds - {{\int}_{0}^{t}} f_{n}(\mathbf{d}_{n}(s)) ds \\ &&+ {{\int}_{0}^{t}} \tilde{P}_{n} G(\mathbf{d}_{n}(s)) \rho(s) ds := {J^{1}_{n}} +{J^{2}_{n}}(t) + {J^{3}_{n}}(t) + {J^{4}_{n}}(t) + {J^{5}_{n}}(t). \end{array} $$
(A.11)

Using the same arguments as in Theorem 3.1 of Flandoli and Gatarek [17], we obtain

$$ \begin{array}{@{}rcl@{}} \left| {I^{1}_{n}} \right|^{2}_{\mathrm{H}} \leq k_{1}, \quad \left| {I^{2}_{n}} \right|_{\mathrm{W}^{\beta, 2}([0, T]; \mathrm{V}^{\prime})}^{2} \leq k_{2}, \quad \left| {I^{3}_{n}} \right|_{\mathrm{W}^{\beta, 2}([0, T]; \mathrm{V}^{\prime})}^{2} \leq k_{3}. \end{array} $$

For t > s, using the Cauchy-Schwarz and Young’s inequality and the property of σ, we get

$$ \begin{array}{@{}rcl@{}} &&\left| {I^{5}_{n}}(t) - {I^{5}_{n}}(s) \right|^{2}_{\mathrm{H}} = \bigg| {{\int}_{s}^{t}} P_{n} \sigma(\mathbf{u}_{n}(l)) \theta(l) dl \bigg|^{2}_{\mathrm{H}} \leq \left( {{\int}_{s}^{t}} | P_{n} \sigma(\mathbf{u}_{n}(l)) \theta(l) |_{\mathrm{H}} dl \right)^{2} \\ &&\!\leq\! \left( {{\int}_{s}^{t}} \sqrt{K} \sqrt{1+|\mathbf{u}_{n}(l)|_{\mathrm{H}}^{2}} |\theta(l) |_{\mathrm{H}} dl \right)^{2} \leq c \left( 1+ \sup_{l \in [0, T]} |\mathbf{u}_{n}(l)|_{\mathrm{H}}^{2} \right) {{\int}_{s}^{t}} K dl {{\int}_{s}^{t}} |\theta(l) |^{2}_{\mathrm{H}_{0}} dl.\\ \end{array} $$
(A.12)

Taking s = 0, then integrating from 0 to T we obtain,

$$ \begin{array}{@{}rcl@{}} {{\int}_{0}^{T}} \left| {I^{5}_{n}}(l) \right|^{2}_{\mathrm{H}} dl \leq C(T) \left( 1+ \sup_{l \in [0, T]} |\mathbf{u}_{n}(l)|_{\mathrm{H}}^{2} \right) {{\int}_{0}^{T}} K dl {{\int}_{0}^{T}} |\theta(l) |^{2}_{\mathrm{H}_{0}} dl, \end{array} $$
(A.13)

and

$$ \begin{array}{@{}rcl@{}} &&{}{{\int}_{0}^{T}}{{\int}_{0}^{T}} \frac{\left| {I^{5}_{n}}(t) - {I^{5}_{n}}(s) \right|^{2}_{\mathrm{H}}}{|t-s|^{1+2\beta}} dt ds \leq c \left( 1+ \sup_{l \in [0, T]} |\mathbf{u}_{n}(l)|_{\mathrm{H}}^{2} \right) {{\int}_{0}^{T}} K dl {{\int}_{0}^{T}}{{\int}_{0}^{T}} {{\int}_{s}^{t}}\\ && \qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\quad ~~~ \frac{| \theta(l)|^{2}_{\mathrm{H}_{0}}}{|t-s|^{1+2\beta}} dl dt ds.\end{array} $$
(A.14)

Using Fubini’s theorem for \(\beta \in (0, \frac {1}{2})\),

$$ \begin{array}{@{}rcl@{}} {{\int}_{0}^{T}}{{\int}_{0}^{T}} {{\int}_{s}^{t}} \frac{| \theta(l)|^{2}_{\mathrm{H}}}{|t-s|^{1+2\beta}} dl dt ds \leq \tilde{c} {{\int}_{0}^{T}} | \theta(l)|^{2}_{\mathrm{H}_{0}} dl \leq C. \end{array} $$
(A.15)

Using Proposition A.3, inequalities (A.12), (A.13), (A.14) and (A.15) we get,

$$ \begin{array}{@{}rcl@{}} \left| {I^{5}_{n}} \right|_{\mathrm{W}^{\beta, 2}([0, T]; \mathrm{H})}^{2} \leq k_{5}. \end{array} $$

Now we calculate for t > s,

$$ \begin{array}{@{}rcl@{}} &&\left| {I^{4}_{n}}(t) - {I^{4}_{n}}(s) \right|^{2}_{\mathrm{V}^{\prime}} = \bigg| {{\int}_{s}^{t}} M_{n}(\mathbf{d}_{n}(l)) dl \bigg|^{2}_{\mathrm{V}^{\prime}} \leq \left( {{\int}_{s}^{t}} | M_{n}(\mathbf{d}_{n}(l)) |_{\mathrm{V}^{\prime}} dl \right)^{2} \\ &&\leq \left( {{\int}_{s}^{t}} |\nabla \mathbf{d}_{n}(l)) |_{L^{2}} | \mathcal{A} \mathbf{d}_{n}(l)) |_{L^{2}} dl \right)^{2} \leq C_{T} \sup_{l \in [0, T]} |\nabla \mathbf{d}_{n}(l)) |_{L^{2}}^{2} {{\int}_{s}^{t}} | \mathcal{A} \mathbf{d}_{n}(l)) |_{L^{2}}^{2} dl. \end{array} $$

Now using the similar procedure as done to get inequalities (A.12), (A.13), (A.14), (A.15) with the help of Proposition A.2 and Proposition A.3 we get,

$$ \begin{array}{@{}rcl@{}} \left| {I^{4}_{n}} \right|_{\mathrm{W}^{\beta, 2}([0, T]; \mathrm{V}^{\prime})}^{2} \leq k_{4}. \end{array} $$

Now consider (A.11). From Theorem 3.1 of Flandoli and Gatarek [17] we get,

$$\left| {J^{1}_{n}} \right|^{2}_{H^{1}} \leq C_{1}, \qquad \left| {J^{2}_{n}} \right|_{\mathrm{W}^{1, 2}([0, T]; (D(\mathcal{A}))')}^{2} \leq C_{2}.$$

Again for t > s, from (2.6) we have,

$$ \begin{array}{@{}rcl@{}} &&\left| {J^{3}_{n}}(t) - {J^{3}_{n}}(s) \right|^{2}_{(D(\mathcal{A}))^{\prime}} = \left| {{\int}_{s}^{t}} \tilde{B}_{n}(\mathbf{u}_{n}(l), \mathbf{d}_{n}(l)) dl \right|^{2}_{(D(\mathcal{A}))^{\prime}} \leq \left( {{\int}_{s}^{t}} | \tilde{B}_{n}(\mathbf{u}_{n}(l), \mathbf{d}_{n}(l)) |_{L^{2}} dl \right)^{2} \\ &&\leq c \left( {{\int}_{s}^{t}} \left\{ |\mathbf{u}_{n}(l)| | \nabla \mathbf{u}_{n}(l)| + | \nabla \mathbf{d}_{n}(l)| | \mathcal{A} \mathbf{d}_{n}(l)| \right\} dl \right)^{2} \\ &&\leq C_{T} {{\int}_{s}^{t}} \left\{ |\mathbf{u}_{n}(l)|^{2} | \nabla \mathbf{u}_{n}(l)|^{2} + | \nabla \mathbf{d}_{n}(l)|^{2} | \mathcal{A} \mathbf{d}_{n}(l)|^{2} \right\} dl \\ &&\leq C_{T} \left[ \sup_{l \in [0, T]} |\mathbf{u}_{n}(l)|_{\mathrm{H}}^{2} {{\int}_{s}^{t}} \| \mathbf{u}_{n}(l)\|^{2} dl + \sup_{l \in [0, T]} | \nabla \mathbf{d}_{n}(l) |_{L^{2}}^{2} {{\int}_{s}^{t}} | \mathcal{A} \mathbf{d}_{n}(l) |_{L^{2}}^{2} dl \right]. \end{array} $$

Now using Proposition A.2 and Proposition A.3, following the same technique as (A.12)-(A.15), for \(\beta \in (0, \frac {1}{2})\) we obtain

$$ \begin{array}{@{}rcl@{}} \left| {J^{3}_{n}} \right|_{\mathrm{W}^{\beta, 2}([0, T]; (D(\mathcal{A}))')}^{2} \leq C_{3}. \end{array} $$

Following Lemma 6.1 (equation (6.26)) in [9] and similar procedure as (A.12)-(A.15) will give for \(\beta \in (0, \frac {1}{2})\),

$$ \begin{array}{@{}rcl@{}} \left| {J^{4}_{n}} \right|_{\mathrm{W}^{\beta, 2}([0, T]; (D(\mathcal{A}))')}^{2} \leq C_{4}. \end{array} $$

Now for \({J^{5}_{n}},\) since \(\rho \in S^{\alpha }_{2},\) using the property of G, Proposition A.2 and similar technique as (A.12)-(A.15) we conclude for \(\beta \in (0, \frac {1}{2})\),

$$ \begin{array}{@{}rcl@{}} \left| {J^{5}_{n}} \right|_{\mathrm{W}^{\beta, 2}([0, T]; L^{2})}^{2} \leq C_{5}. \end{array} $$

Since H↪V and \(L^{2} \hookrightarrow (D(\mathcal {A}))',\) from above estimates for \(\beta \in (0, \frac {1}{2})\) we get

$$ \begin{array}{@{}rcl@{}} \sup_{n \geq 1} \left| \mathbf{u}_{n} \right|_{\mathrm{W}^{\beta, 2}([0, T]; \mathrm{V}^{\prime})}^{2} \leq C_{\beta} \qquad \text{and} \qquad \sup_{n \geq 1} \left| \mathbf{d}_{n} \right|_{\mathrm{W}^{\beta, 2}([0, T]; (D(\mathcal{A}))')}^{2} \leq \tilde{C}_{\beta} \end{array} $$

Finally we are ready to prove Theorem 5.5.

1.2 A.2. Proof of Theorem 5.5

Proof

Existence:

Let us choose and fix \(\beta \in (0, {\frac 12})\). From Proposition A.2, A.3 and A.4 we deduce that, there exist positive constants C1, C2, C3(β), C4(β) such that (7.3), (7.4) and (7.5) hold. From the above estimates and Lemma 2.3, we infer that there exists a subsequence \((\mathbf {u}_{m^{\prime }}, \mathbf {d}_{m^{\prime }})\) and an element

$$ (\mathbf{u}, \mathbf{d}) \in L^{2}([0, T]; \mathrm{V}) \cap L^{\infty}([0, T]; \mathrm{H}) \times L^{2}([0, T]; D(\mathcal{A})) \cap L^{\infty}([0, T]; H^{1}) $$

such that as m we have,

$$ \begin{array}{@{}rcl@{}} \left\{\begin{array}{ll} &\mathbf{u}_{m^{\prime}} \to \mathbf{u} \quad \text{in} \quad L^{2}([0, T]; \mathrm{V}) \quad \text{weakly}, \\ &\mathbf{u}_{m^{\prime}} \to \mathbf{u} \quad \text{in} \quad L^{\infty}([0, T]; \mathrm{H}) \quad \text{weak-star}, \\ &\mathbf{d}_{m^{\prime}} \to \mathbf{d} \quad \text{in} \quad L^{2}([0, T]; D(\mathcal{A})) \quad \text{weakly}, \\ &\mathbf{d}_{m^{\prime}} \to \mathbf{d} \quad \text{in} \quad L^{\infty}([0, T]; H^{1}) \quad \text{weak-star}. \\ &\mathbf{u}_{m^{\prime}} \to \mathbf{u} \quad \text{in} \quad L^{2}([0, T]; \mathrm{H}) \quad \text{strongly}, \\ & \mathbf{d}_{m^{\prime}} \to \mathbf{d} \quad \text{in} \quad L^{2}([0, T]; H^{1}) \quad \text{strongly}. \end{array}\right. \end{array} $$

Finally, we show (u, d) is the unique solution to (5.8)-(5.9). For this we will argue similarly as in the proof of Theorem 3.1 in Temam [25], Section 3.

The similar technique to prove (7.11) (in the proof of Condition 1), gives us the convergence as m, for individual terms involving control parameters. For all other linear and nonlinear terms, we follow the calculations of our earlier work (see [9]).

Using similar arguments as in the proof of Theorem 3.1 in Temam [25], Section 3, Chapter III, we infer that (u, d) is the desired solution.

Eqs. 5.10, 5.11 can be proved similarly as Eqs. 7.3 and 7.4. Now using the similar arguments as in the proof of Theorem 3.2 in Temam [25], Section 3, Chapter III, we also have

$$ \begin{array}{@{}rcl@{}} \frac{d\mathbf{u}}{dt} \in L^{2}([0, T]; \mathrm{V}^{\prime}) + L^{1}([0, T]; \mathrm{H}) \quad \text{and} \quad \frac{d\mathbf{d}}{dt} \in L^{2}([0, T]; (D(\mathcal{A}))') + L^{1}([0, T]; H^{1}). \end{array} $$

Due to Lemma 1.2, (1.84) and (1.85) in Temam [25], Chapter III, we infer that

$$ \mathbf{u} \in \mathbb{C}([0, T]; \mathrm{H}) \quad \text{and} \quad \mathbf{d} \in \mathbb{C}([0, T]; H^{1}). $$

Uniqueness

The uniqueness will follow the same technique required to get (7.21) and (7.22) in the proof of Condition 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brzeźniak, Z., Manna, U. & Panda, A.A. Large Deviations for Stochastic Nematic Liquid Crystals Driven by Multiplicative Gaussian Noise. Potential Anal 53, 799–838 (2020). https://doi.org/10.1007/s11118-019-09788-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-019-09788-6

Keywords

Mathematics Subject Classification (2010)

Navigation