Skip to main content
Log in

Quantitative Fatou Theorems and Uniform Rectifiability

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

We show that a suitable quantitative Fatou Theorem characterizes uniform rectifiability in the codimension 1 case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akman, M., Bortz, S., Hofmann, S., Martell, J.M.: Rectifiability, interior approximation and Harmonic Measure. Preprint 2016. arXiv:1601.08251v2. (2016)

  2. Azzam, J., Garnett, J., Mourgoglou, M., Tolsa, X.: Uniform rectifiability, elliptic measure, square functions, and 𝜖-approximability via an ACF monotonicity formula. Preprint 2016. arXiv:1612.02650

  3. Bishop, C., Jones, P.: Harmonic measure and arclength. Ann. Math. (2) 132, 511–547 (1990)

    Article  MathSciNet  Google Scholar 

  4. Christ, M.: A T(b) theorem with remarks on analytic capacity and the Cauchy integral. Colloq. Math. LX/LXI, 601–628 (1990)

    Article  MathSciNet  Google Scholar 

  5. Dahlberg, B.: Approximation of harmonic functions. Ann. Inst. Fourier (Grenoble) 30, 97–107 (1980)

    Article  MathSciNet  Google Scholar 

  6. David, G.: Morceaux de graphes lipschitziens et intégrales singulières sur une surface. (French) [Pieces of Lipschitz graphs and singular integrals on a surface]. Rev. Mat. Iberoamericana 4(1), 73–114 (1988)

    Article  MathSciNet  Google Scholar 

  7. David, G., Semmes, S.: Singular integrals and rectifiable sets in \(\mathbb {R}^{n}\): beyond Lipschitz graphs. Asterisque 193, 152pp (1991)

    MathSciNet  Google Scholar 

  8. David, G., Semmes, S.: Analysis of and on Uniformly Rectifiable Sets, Mathematical Monographs and Surveys, vol. 38. AMS (1993)

  9. De Giorgi, E.: Sulla differenziabilità el’analiticitá delle estremali degli integrali multpli regolari. Mem. Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur. (3) 3, 25–43 (1957)

    Google Scholar 

  10. Fatou, P: Séries trigonométriques et séries de Taylor. (French). Acta Math. 30(1), 335–400 (1906)

    Article  MathSciNet  Google Scholar 

  11. Garnett, J.: Bounded Analytic Functions. Academic Press, San Diego (1981)

    MATH  Google Scholar 

  12. Garnett, J., Mourgoglou, M., Tolsa, X.: Uniform rectifiability from Carleson measure estimates and 𝜖-approximability of bounded harmonic functions. Duke Math. J. 167(8), 1473–1524 (2018)

    Article  MathSciNet  Google Scholar 

  13. Heinonen, J., Kilpeläinen, T., Martio, O.: Nonlinear Potential Theory of Degenerate Elliptic Equations. Dover Publications, Inc., Mineola (2006). Unabridged republication of the 1993 original

    MATH  Google Scholar 

  14. Hofmann, S., Martell, J.M.: Uniform rectifiability and harmonic measure I: Uniform rectifiability implies Poisson kernels in Lp. Ann. Sci. C Norm. Supr. (4) 47(3), 577–654 (2014)

    Article  Google Scholar 

  15. Hofmann, S., Martell, J.M., Mayboroda, S.: Uniform rectifiablity, Carleson measure estimates, and approximation of harmonic functions. Duke Math. J. 165(12), 2331–2389 (2016)

    Article  MathSciNet  Google Scholar 

  16. Hofmann, S., Mitrea, D., Mitrea, M., Morris, A.: Lp-square function estimates on spaces of homogeneous type and on uniformly rectifiable sets. Mem. Amer. Math. Soc. 245(1159), v + 108 (2017)

    MATH  Google Scholar 

  17. Jerison, D., Kenig, C.: Boundary behavior of harmonic functions in nontangentially accessible domains. Adv. Math. 46(1), 80–147 (1982)

    Article  MathSciNet  Google Scholar 

  18. Kenig, C., Koch, H., Pipher, J., Toro, T.: A new approach to absolute continuity of elliptic measure, with applications to non-symmetric equations. Adv. Math. 153(2), 231–298 (2000)

    Article  MathSciNet  Google Scholar 

  19. Nash, J.: Continuity of solutions to parabolic and elliptic equations. Am. J. Math. 80, 931–954 (1958)

    Article  MathSciNet  Google Scholar 

  20. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  21. Varopoulos, N.: A remark on functions of bounded mean oscillation and bounded harmonic functions. Pacific J. Math. 74, 257–259 (1978)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank the referee for a careful reading of the manuscript, and for several helpful suggestions to improve the exposition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Bortz.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This material is based upon work supported by National Science Foundation under Grant No. DMS-1440140 while the authors were in residence at the MSRI in Berkeley, California, during the Spring 2017 semester. The first author was supported by the NSF INSPIRE Award DMS-1344235. The second author was supported by NSF grant DMS-1664047

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bortz, S., Hofmann, S. Quantitative Fatou Theorems and Uniform Rectifiability. Potential Anal 53, 329–355 (2020). https://doi.org/10.1007/s11118-019-09771-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-019-09771-1

Keywords

Navigation