Skip to main content
Log in

Brownian Loops Topology

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

In the seminal work of Symanzik (1969), Poisson ensembles of Brownian loops were implicitly used. Since the work of Lawler and Werner (Prob. Th. Rel. Fields 128:565–588 2004) on “loop soups”, these ensembles have also been the object of many investigations. The purpose of the present work is to determine the distributions related to their topological properties, using trace formula and zeta regularization. These results have been announced in Le Jan (2016) and Le Jan (2017).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benoist, S., Dubédat, J.: An SLE2 loop measure. Ann. Inst. Henri Poincaré Probab. Stat. 52(3), 1406–1436 (2016)

    Article  MathSciNet  Google Scholar 

  2. Chavel, I.: Eigenvalues in Riemannian geometry. Academic Press, New York (1984)

    MATH  Google Scholar 

  3. De Rham, G.: Variétés différentiables. Hermann. Differentiable manifolds. Springer, Berlin (1955)

    Google Scholar 

  4. Doubrovine, B., Novikov, S., Fomenko, A.: Géométrie Contemporaine. Méthodes et applications.Mir. Modern Geometry. Methods and Applications. Springer, Berlin (1982)

    Google Scholar 

  5. Elworthy, K.D.: Stochastic differential equations on manifolds. London Math. Soc Lecture notes 70, Cambridge (1982)

    Book  Google Scholar 

  6. Fine, B., Rosenberger, G.: Conjugacy separability of Fuchsian groups and related questions. Contemp. Math. 109, 11–18 (1990)

    Article  MathSciNet  Google Scholar 

  7. Fukushima, M., Oshima, Y., Takeda, M.: Dirichlet Forms and Symmetric Markov Processes, 2nd edn. De Gruyter, Berlin (2010)

    Book  Google Scholar 

  8. Gawedzki, K.: Lectures on Conformal Field Theory. In: Quantum field theory and strings: a course for mathematicians, edited by Edward Witten, Robbert Dijkgraaf and Pierre Deligne, IAS/Park City Lectures 1996/97. American Mathematical Society (1999)

  9. Ikeda, N., Watanabe, S.: Stochastic differential equations and diffusion processes. North Holland (1981)

  10. Knapp, A.: Representation theory of semisimple groups. Princeton University Press, Princeton (1986)

    Book  Google Scholar 

  11. Kobayashi, S., Nomizu, K.: Foundations of differential geometry. Interscience (1963, 1969)

  12. Kassel, A., Lévy, T.: Covariant Symanzik identities. arXiv:1607.05201 [math.PR]

  13. Kenyon, R.: Spanning forests and the vector bundle Laplacian. Ann. Probab. 39, 1983–2017 (2011)

    Article  MathSciNet  Google Scholar 

  14. Lawler, G., Werner, W.: The Brownian loop soup. Prob. Th. Rel. Fields 128, 565–588 (2004)

    Article  MathSciNet  Google Scholar 

  15. Le Jan, Y.: Markov paths, loops and fields. École d’Été de probabilités de Saint-Flour XXXVIII - 2008. Lecture Notes in Mathematics 2026. Springer (2011)

  16. Le Jan, Y.: Markov loops, free field and Eulerian networks. J. Math. Soc. Jpn. 67(4), 1671–1680 (2015). arXiv:1405.2879

    Article  MathSciNet  Google Scholar 

  17. Le Jan, Y.: Homology of Brownian loops. arXiv:1610.09784 (2016)

  18. Le Jan, Y.: Markov loops, Coverings and Fields. Annales de la Faculté, des Sciences de Toulouse XXVI. pp. 401–416. arXiv:1602.02708 (2017)

  19. Le Jan, Y.: Markov loops topology. arXiv:1707.05106 (2017)

  20. Mckean, H.P.: Selberg’s Trace Formula as Applied to a Compact Riemann Surface. Comm. Pure Appl. Maths XXV, 225–246 (1972)

    Article  MathSciNet  Google Scholar 

  21. Minasyan, A., Zalesskii, P.: Virtually compact special hyperbolic groups are conjugacy separable. Comm. Math. Helv. 91, 609–627 (2016)

    Article  MathSciNet  Google Scholar 

  22. Mnëv, P.: Discrete Path Integral Approach to the Selberg Trace Formula for Regular Graphs. Comm. Math. Phys. 274, 233–241 (2007)

    Article  MathSciNet  Google Scholar 

  23. Stebe, P.F.: Conjugacy separability of groups of integer matrices. Proc. AMS 32, 1–7 (1972)

    Article  MathSciNet  Google Scholar 

  24. Symanzik, K.: Euclidean quantum field theory. Scuola internazionale di Fisica ”Enrico Fermi”. XLV Corso, pp 152–223. Academic Press, Berlin (1969)

    Google Scholar 

  25. Zagier, D.: The Mellin transformation and other useful analytic techniques. Appendix to quantum field theory I, by E. Zeidler. Springer, Berlin (2007)

    Google Scholar 

Download references

Acknowledgments

Thanks are due to the referee for suggesting several improvements of this paper, and to Jean-Michel Bismut and Yves Benoist for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yves Le Jan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le Jan, Y. Brownian Loops Topology. Potential Anal 53, 223–229 (2020). https://doi.org/10.1007/s11118-019-09765-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-019-09765-z

Keywords

Navigation