Skip to main content
Log in

Multiple Sets Exponential Concentration and Higher Order Eigenvalues

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

On a generic metric measured space, we introduce a notion of improved concentration of measure that takes into account the parallel enlargement of k distinct sets. We show that the k-th eigenvalues of the metric Laplacian gives exponential improved concentration with k sets. On compact Riemannian manifolds, this allows us to recover estimates on the eigenvalues of the Laplace-Beltrami operator in the spirit of an inequality of [11].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aida, S., Stroock, D.: Moment estimates derived from Poincaré and logarithmic Sobolev inequalities. Math. Res. Lett. 1(1), 75–86 (1994)

    Article  MathSciNet  Google Scholar 

  2. Ambrosio, L., Ghezzi, R.: Sobolev and bounded variation functions on metric measure spaces. In: Geometry, Analysis and Dynamics on Sub-Riemannian Manifolds. Vol. II, EMS Ser. Lect. Math., pp. 211–273. Eur. Math. Soc., Zürich (2016)

  3. Atkinson, K., Han, W.: Spherical Harmonics and Approximations on the Unit Sphere: An Introduction, Volume 2044 of Lecture notes in Mathematics. Springer, Heidelberg (2012)

    Book  Google Scholar 

  4. Bakry, D., Émery, M.: Diffusions hypercontractives. In: Séminaire de probabilités, XIX, 1983/84, volume 1123 of Lecture Notes in Math, pp. 177–206. Springer, Berlin (1985)

    Google Scholar 

  5. Bakry, D., Gentil, I., Ledoux, M.: Analysis and geometry of Markov diffusion operators, volume 348 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Cham (2014)

    Google Scholar 

  6. Bobkov, S., Ledoux, M.: Poincaré’s inequalities and Talagrand’s concentration phenomenon for the exponential distribution. Probab. Theory Related Fields 107(3), 383–400 (1997)

    Article  MathSciNet  Google Scholar 

  7. Buser, P.: A note on the isoperimetric constant. Ann. Sci. É,cole Norm. Sup. (4) 15(2), 213–230 (1982)

    Article  MathSciNet  Google Scholar 

  8. Chavel, I.: Eigenvalues in Riemannian Geometry, volume 115 of Pure and Applied Mathematics. Academic Press, Inc., Orlando (1984). Including a chapter by Burton Randol, With an appendix by Jozef Dodziuk

    Google Scholar 

  9. Cheeger, J.: Differentiability of Lipschitz functions on metric measure spaces. Geom. Funct. Anal. 9(3), 428–517 (1999)

    Article  MathSciNet  Google Scholar 

  10. Chung, F.R.K., Grigor’yan, A., Yau, S.-T.: Eigenvalues and diameters for manifolds and graphs. In: Tsing Hua Lectures on Geometry & Analysis (Hsinchu, 1990–1991), pp. 79–105. Int. Press, Cambridge (1997)

  11. Chung, F.R.K., Grigor’yan, A., Yau, S.-T.: Upper bounds for eigenvalues of the discrete and continuous Laplace operators. Adv. Math. 117(2), 165–178 (1996)

    Article  MathSciNet  Google Scholar 

  12. Friedman, J., Tillich, J.-P.: Laplacian eigenvalues and distances between subsets of a manifold. J. Differential Geom. 56(2), 285–299 (2000)

    Article  MathSciNet  Google Scholar 

  13. Funano, K.: Estimates of Eigenvalues of the Laplacian by a reduced number of subsets. Israel J. Math. 217(1), 413–433 (2017)

    Article  MathSciNet  Google Scholar 

  14. Funano, K., Shioya, T.: Concentration, Ricci curvature, and Eigenvalues of Laplacian. Geom. Funct. Anal. 23(3), 888–936 (2013)

    Article  MathSciNet  Google Scholar 

  15. Gozlan, N., Roberto, C., Samson, P.-M.: From dimension free concentration to the P,oincaré inequality. Calc. Var Partial Differential Equations 52(3-4), 899–925 (2015)

    Article  MathSciNet  Google Scholar 

  16. Gromov, M., Milman, V.D.: A topological application of the isoperimetric inequality. Amer. J. Math. 105(4), 843–854 (1983)

    Article  MathSciNet  Google Scholar 

  17. Heinonen, J.: Lectures on Lipschitz Analysis, volume 100 of Report. University of Jyväskylä Department of Mathematics and Statistics. University of Jyväskylä, Jyväskylä (2005)

    Google Scholar 

  18. Kirszbraun, M.: Uber die zusammenziehende und lipschitzsche transformationen. Fundam. Math. 22, 77–108 (1934)

    Article  Google Scholar 

  19. Ledoux, M.: The Concentration of Measure phenomenon, Volume 89 of Mathematical Surveys and Monographs. American Mathematical Society, Providence (2001)

    Google Scholar 

  20. Lichnerowicz, A: Géométrie des groupes de transformations. Travaux et recherches mathématiques, III. Dunod, Paris (1958)

    Google Scholar 

  21. Liu, S.: An optimal dimension-free upper bound for eigenvalue ratios. Arxiv e-prints, May (2014)

  22. McShane, E.J.: Extension of range of functions. Bull. Amer. Math. Soc. 40(12), 837–842 (1934)

    Article  MathSciNet  Google Scholar 

  23. Milman, E.: Spectral estimates, contractions and hypercontractivity. J. Spectr. Theory 8(2), 669–714 (2018)

    Article  MathSciNet  Google Scholar 

  24. Milman, E.: On the role of convexity in isoperimetry, spectral gap and concentration. Invent. Math. 177(1), 1–43 (2009)

    Article  MathSciNet  Google Scholar 

  25. Milman, E.: Isoperimetric and concentration inequalities: equivalence under curvature lower bound. Duke Math. J. 154(2), 207–239 (2010)

    Article  MathSciNet  Google Scholar 

  26. Schmuckenschläger, M.: Martingales, Poincaré type inequalities, and deviation inequalities. J. Funct. Anal. 155(2), 303–323 (1998)

    Article  MathSciNet  Google Scholar 

  27. Wang, F.-Y.: Functional inequalities for empty essential spectrum. J. Funct. Anal. 170(1), 219–245 (2000)

    Article  MathSciNet  Google Scholar 

  28. Whitney, H.: Analytic extensions of differentiable functions defined in closed sets. Trans. Amer. Math. Soc. 36(1), 63–89 (1934)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathaël Gozlan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gozlan, N., Herry, R. Multiple Sets Exponential Concentration and Higher Order Eigenvalues. Potential Anal 52, 203–221 (2020). https://doi.org/10.1007/s11118-018-9743-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-018-9743-1

Keywords

Mathematics Subject Classification (2010)

Navigation